Loading [MathJax]/jax/output/HTML-CSS/jax.js

Hydrogen Sorption Properties, Thermal Stability and Kinetics of Hydrogen Desorption from MgH2 Hydride Phase of a Mechanical Alloy of Magnesium with Ti and Y

O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, A. Yu. Koval

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 25.01.2019; final version - 23.05.2019. Download: PDF

The mechanical alloy-composite (MА; Mg + 10% wt. Ti + 5% wt. Y) is synthesized. The phase content, microstructure, thermal stability, kinetics of hydrogen desorption from the MgH2 hydride phase of the obtained MA are studied by using XRD, SEM, TDS methods. As established, the addition of Ti and Y to magnesium leads to significant improvement in the kinetics of hydrogen desorption from the MgH2 hydride phase, which is evidenced by a significant reduction (in 6 times) of the time of half and all hydrogen release from it. The decrease due to Ti and Y alloying in the thermodynamic stability of MgH2 is not found.

Key words: mechanical alloy, microstructure, thermodesorption spectroscopy, hydrogen-sorption properties, thermal stability, kinetics of hydrogen desorption.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i08/0981.html

DOI: https://doi.org/10.15407/mfint.41.08.0981

PACS: 61.72.S-, 68.43.Mn, 68.43.Nr, 81.07.Bc, 81.20.Ev, 81.20.Wk, 88.30.rd

Citation: O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, and A. Yu. Koval, Hydrogen Sorption Properties, Thermal Stability and Kinetics of Hydrogen Desorption from MgH2 Hydride Phase of a Mechanical Alloy of Magnesium with Ti and Y, Metallofiz. Noveishie Tekhnol., 41, No. 8: 981—1001 (2019) (in Ukrainian)


REFERENCES
  1. W. Oelerich, T. Klassen, and R. Borman, J. Alloys Compd., 315: 237 (2001). Crossref
  2. Z. Degouche, J. Goyette, and T. K. Bose, Int. J. Hydrogen Energy, 28: 983 (2003). Crossref
  3. J. Huot, J. F. Pelletier, and L. B. Lurio, J. Alloys Compd., 348: 319 (2003). Crossref
  4. C. X. Shang, M. Bououdina, and Y. Song, Int. J. Hydrogen Energy, 29: 73 (2004). Crossref
  5. A. Bassetti, E. Bonetti, and L. Pasquini, J. Eur. Phys. B, 43: 19 (2005). Crossref
  6. N. Hanada, T. Ichikawa, and H. Fujii, J. Alloys Compd., 404-406: 716 (2005). Crossref
  7. E. David, J. Achiev. Mat. Manufact. Eng., 20: 87 (2007).
  8. V. D. Dobrovolsky, O. G. Ershova, Yu. M. Solonin, O. Y. Khyzhun, and V. Paul-Boncour, J. Alloys Compd., 465: 177 (2008). Crossref
  9. M. Polanskiand and J. Bystrzycki, Int. J. Hydrogen Energy, 34: 7692 (2009). Crossref
  10. D. M. Liu, C. H. Fang, and Q. A. Zhang, J. Alloys Compd., 485: 391 (2009). Crossref
  11. S. T. Sabitu, G. Gallo, and A. J. Goudy, J. Alloys Compd., 499: 35 (2010). Crossref
  12. J. Mao, Z. Guo, and X. Yu, Int. J. Hydrogen Energy, 35: 4569 (2010). Crossref
  13. M. Tian and C. Shang, J. Chem. Technol. Biotechnol., 86: 69 (2011). Crossref
  14. R. Rohit, P. T. Anand, and M. A. Shaz, Int. J. Hydrogen Energy, 38: 2778 (2013). Crossref
  15. J J.-L. Bobet, E. Akiba, and B. Darriet, Int. J. Hydrogen Energy, 26: 493 (2001). Crossref
  16. H. Imamura, M. Kusuhara, and S. Minami, Acta Mater., 51: 6407 (2003). Crossref
  17. C. X. Shang and Z. X. Guo, J. Power Sources, 129: 73 (2004). Crossref
  18. S. N. Klyamkin, B. P. Tarasov, and E. L. Straz, Int. Sci. J. Alternat. Energy Ecol., 1, 21:27 (2005).
  19. T. Spassov, V. Rangelova, and P. Solsona, J. Alloys Compd., 398: 139 (2005). Crossref
  20. P. Delchev, P. Solsona, and B. Drenchev, J. Alloys Compd., 388: 98 (2005). Crossref
  21. A. Ming, Mater. Sci. Eng. B, 117: 37 (2005). Crossref
  22. A. Montone, J. Grbovič, and A. Bassetti, Int. J. Hydrogen Energy, 31: 2088 (2006). Crossref
  23. Z. G. Huang, Z. P. Guo, and A. Calka, J. Alloys Compd., 427: 94 (2007). Crossref
  24. M. A. Lillo-Ródenas, Z. X. Guo, and K. F. Aguey-Zinsou, J. Carbon, 46: 126 (2008). Crossref
  25. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, O. Y. Khyzhun, and A. Yu. Koval, J. Alloys Compd., 464: 212 (2008). Crossref
  26. O. G. Ershova, V. D. Dobrovolsky,and Yu. M. Solonin, Carbon Nanomaterials in Clean Energy Hydrogen Systems (Ed. NATO Science for Peace and Security Programme) (Springer: 2008), p. 429.
  27. O. G. Ershova, V. D. Dobrovolsky, and Yu. M. Solonin, Carbon Nanomaterials in Clean Energy Hydrogen Systems (Ed. NATO Science for Peace and Security Programme) (Springer: 2008), p. 467.
  28. S.-N Kwon, S.-H. Baek, and R. D. Mumm, Int. J. Hydrogen Energy, 33: 4586 (2008). Crossref
  29. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, O. Y. Khyzhun, and A. Yu. Koval, Mater. Chem. Phys., 162: 408 (2015). Crossref
  30. K. Bambhaniya, G. Grewal, and V. Shrinet, Int. J. Hydrogen Energy, 37: 3671 (2012). Crossref
  31. O. G. Ershova, V. D. Dobrovolsky, and Yu. M. Solonin, Fiz. Khim. Tverd. Tila, 14, No. 1: 101 (2013) (in Ukrainian).
  32. M. Bououdina, and Z. X. Guo, J. Alloys Compd., 336: 222 (2002). Crossref
  33. M. Tanniru, D. K. Slattery, and F. Ebrahimi, Int. J. Hydrogen Energy, 35: 3555 (2010). Crossref
  34. M. Tanniru, D. K. Slattery, and F. Ebrahimi, Int. J. Hydrogen Energy, 36: 639 (2011). Crossref
  35. C. Zhou, Z. Z. Fang, and J. Lu, J. Phys. Chem. C, 118: 11526 (2014). Crossref
  36. S. Bouaricha, L. P. Dodelet, and D. Guay, J. Alloys Compd., 297: 282 (2000). Crossref
  37. J. F. Stampfer, C. E. Holley, and J. F. Suttle, J. Amer. Chem. Soc., 82: 3504 (1960). Crossref
  38. O. Ershova, V. Dobrovolsky, and O. Khyzhun, Fiz. Khim. Tverd. Tila, 12, No. 4: 1044 (2011) (in Ukrainian).
  39. V. D. Dobrovolsky, O. G. Ershova, and Yu. M. Solonin, Voden' v Alternatyvniy Energetytsi ta Novitnikh Tekhnologiyakh [Hydrogen in the Alternative Power Industry and Novel Technologies], 1: 136 (2013) (in Ukrainian).
  40. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, and O. Yu. Koval, Metallofiz. Noveishie Tekhnol., 39, No. 11: 1557 (2017) (in Ukrainian). Crossref
  41. O. G. Ershova, V. D. Dobrovolsky, and Yu. M. Solonin, Vidnovlyuvana Energetika, 2: 26 (2017) (in Ukrainian).
  42. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, and A. Yu. Koval, Vidnovlyuvana Energetika, 1: 23 (2019) (in Ukrainian).
  43. Claudia Zlotea, Jun Lub, and Yvonne Andersson, J. Alloys Compd., 426: 357 (2006). Crossref
  44. Claudia Zlotea, Acta Mater., 56: 2421 (2008). Crossref
  45. Tai Yang, Qiang Li, Ning Liu, Chunyong Liang, Fuxing Yin, and Yanghuan Zhang, J. Power Sources, 378: 636 (2018). Crossref
  46. Xiaoying Shi, Jianxin Zou, Chuan Liu, Lifang Cheng, Dejiang Li, Xiaoqin Zeng, and Wenjiang Ding, Int. J. of Hydrogen Energy, 39: 8303 (2014). Crossref
  47. C. Zlotea, M. Sahlberg, P. Moretto, and Y. Andersson, J. Alloys Compd., 489: 375 (2010). Crossref
  48. Z. Li, X. Liu, L. Jiang, and S. Wang, Int. J. Hydrogen Energy, 32: 1869 (2007). Crossref
  49. S. L. Röntzsch and B. Kieback, Int. J. Hydrogen Energy, 34: 7749 (2009). Crossref
  50. Q. A. Zhang, L.X. Zhang, and Q .Q. Wang, J. Alloys Compd., 551: 376 (2013). Crossref
  51. O. G. Ershova, V. D. Dobrovolsky, and Yu. M. Solonin, J. Mater. Sci., 51, No. 4: 457 (2016). Crossref
  52. V. D. Dobrovolsky, O. G. Ershova, Yu. M. Solonin, and O.Y, Khyzhun, Powder Metallurgy Metal Ceramics, 55, No. 7: 477 (2016). Crossref
  53. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, and A. Yu. Koval, Fiz. Khim. Tverd. Tila, 16, No. 3: 576 (2015) (in Ukrainian). Crossref
  54. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, and A. Yu. Koval, Vidnovlyuvana Energetyka, 3: 5 (2015) (in Ukrainian).
  55. O. G. Ershova, V. D. Dobrovolsky, and Yu. M. Solonin, Proc. of XVIII International Scientific and Practical Conference 'Renewable Energy and Energy Efficiency in the XXI Century' (25-27 Sep., 2017) (Kyiv: 2017), p. 173 (in Ukrainian).