Hydrogen Sorption Properties, Thermal Stability and Kinetics of Hydrogen Desorption from MgH$_2$ Hydride Phase of a Mechanical Alloy of Magnesium with Ti and Y

O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, A. Yu. Koval

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 25.01.2019; final version - 23.05.2019. Download: PDF

The mechanical alloy-composite (MА; Mg + 10% wt. Ti + 5% wt. Y) is synthesized. The phase content, microstructure, thermal stability, kinetics of hydrogen desorption from the MgH$_2$ hydride phase of the obtained MA are studied by using XRD, SEM, TDS methods. As established, the addition of Ti and Y to magnesium leads to significant improvement in the kinetics of hydrogen desorption from the MgH$_2$ hydride phase, which is evidenced by a significant reduction (in 6 times) of the time of half and all hydrogen release from it. The decrease due to Ti and Y alloying in the thermodynamic stability of MgH$_2$ is not found.

Key words: mechanical alloy, microstructure, thermodesorption spectroscopy, hydrogen-sorption properties, thermal stability, kinetics of hydrogen desorption.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i08/0981.html

DOI: https://doi.org/10.15407/mfint.41.08.0981

PACS: 61.72.S-, 68.43.Mn, 68.43.Nr, 81.07.Bc, 81.20.Ev, 81.20.Wk, 88.30.rd

Citation: O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, and A. Yu. Koval, Hydrogen Sorption Properties, Thermal Stability and Kinetics of Hydrogen Desorption from MgH$_2$ Hydride Phase of a Mechanical Alloy of Magnesium with Ti and Y, Metallofiz. Noveishie Tekhnol., 41, No. 8: 981—1001 (2019) (in Ukrainian)


REFERENCES
  1. W. Oelerich, T. Klassen, and R. Borman, J. Alloys Compd., 315: 237 (2001). Crossref
  2. Z. Degouche, J. Goyette, and T. K. Bose, Int. J. Hydrogen Energy, 28: 983 (2003). Crossref
  3. J. Huot, J. F. Pelletier, and L. B. Lurio, J. Alloys Compd., 348: 319 (2003). Crossref
  4. C. X. Shang, M. Bououdina, and Y. Song, Int. J. Hydrogen Energy, 29: 73 (2004). Crossref
  5. A. Bassetti, E. Bonetti, and L. Pasquini, J. Eur. Phys. B, 43: 19 (2005). Crossref
  6. N. Hanada, T. Ichikawa, and H. Fujii, J. Alloys Compd., 404-406: 716 (2005). Crossref
  7. E. David, J. Achiev. Mat. Manufact. Eng., 20: 87 (2007).
  8. V. D. Dobrovolsky, O. G. Ershova, Yu. M. Solonin, O. Y. Khyzhun, and V. Paul-Boncour, J. Alloys Compd., 465: 177 (2008). Crossref
  9. M. Polanskiand and J. Bystrzycki, Int. J. Hydrogen Energy, 34: 7692 (2009). Crossref
  10. D. M. Liu, C. H. Fang, and Q. A. Zhang, J. Alloys Compd., 485: 391 (2009). Crossref
  11. S. T. Sabitu, G. Gallo, and A. J. Goudy, J. Alloys Compd., 499: 35 (2010). Crossref
  12. J. Mao, Z. Guo, and X. Yu, Int. J. Hydrogen Energy, 35: 4569 (2010). Crossref
  13. M. Tian and C. Shang, J. Chem. Technol. Biotechnol., 86: 69 (2011). Crossref
  14. R. Rohit, P. T. Anand, and M. A. Shaz, Int. J. Hydrogen Energy, 38: 2778 (2013). Crossref
  15. J J.-L. Bobet, E. Akiba, and B. Darriet, Int. J. Hydrogen Energy, 26: 493 (2001). Crossref
  16. H. Imamura, M. Kusuhara, and S. Minami, Acta Mater., 51: 6407 (2003). Crossref
  17. C. X. Shang and Z. X. Guo, J. Power Sources, 129: 73 (2004). Crossref
  18. S. N. Klyamkin, B. P. Tarasov, and E. L. Straz, Int. Sci. J. Alternat. Energy Ecol., 1, 21:27 (2005).
  19. T. Spassov, V. Rangelova, and P. Solsona, J. Alloys Compd., 398: 139 (2005). Crossref
  20. P. Delchev, P. Solsona, and B. Drenchev, J. Alloys Compd., 388: 98 (2005). Crossref
  21. A. Ming, Mater. Sci. Eng. B, 117: 37 (2005). Crossref
  22. A. Montone, J. Grbovič, and A. Bassetti, Int. J. Hydrogen Energy, 31: 2088 (2006). Crossref
  23. Z. G. Huang, Z. P. Guo, and A. Calka, J. Alloys Compd., 427: 94 (2007). Crossref
  24. M. A. Lillo-Ródenas, Z. X. Guo, and K. F. Aguey-Zinsou, J. Carbon, 46: 126 (2008). Crossref
  25. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, O. Y. Khyzhun, and A. Yu. Koval, J. Alloys Compd., 464: 212 (2008). Crossref
  26. O. G. Ershova, V. D. Dobrovolsky,and Yu. M. Solonin, Carbon Nanomaterials in Clean Energy Hydrogen Systems (Ed. NATO Science for Peace and Security Programme) (Springer: 2008), p. 429.
  27. O. G. Ershova, V. D. Dobrovolsky, and Yu. M. Solonin, Carbon Nanomaterials in Clean Energy Hydrogen Systems (Ed. NATO Science for Peace and Security Programme) (Springer: 2008), p. 467.
  28. S.-N Kwon, S.-H. Baek, and R. D. Mumm, Int. J. Hydrogen Energy, 33: 4586 (2008). Crossref
  29. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, O. Y. Khyzhun, and A. Yu. Koval, Mater. Chem. Phys., 162: 408 (2015). Crossref
  30. K. Bambhaniya, G. Grewal, and V. Shrinet, Int. J. Hydrogen Energy, 37: 3671 (2012). Crossref
  31. O. G. Ershova, V. D. Dobrovolsky, and Yu. M. Solonin, Fiz. Khim. Tverd. Tila, 14, No. 1: 101 (2013) (in Ukrainian).
  32. M. Bououdina, and Z. X. Guo, J. Alloys Compd., 336: 222 (2002). Crossref
  33. M. Tanniru, D. K. Slattery, and F. Ebrahimi, Int. J. Hydrogen Energy, 35: 3555 (2010). Crossref
  34. M. Tanniru, D. K. Slattery, and F. Ebrahimi, Int. J. Hydrogen Energy, 36: 639 (2011). Crossref
  35. C. Zhou, Z. Z. Fang, and J. Lu, J. Phys. Chem. C, 118: 11526 (2014). Crossref
  36. S. Bouaricha, L. P. Dodelet, and D. Guay, J. Alloys Compd., 297: 282 (2000). Crossref
  37. J. F. Stampfer, C. E. Holley, and J. F. Suttle, J. Amer. Chem. Soc., 82: 3504 (1960). Crossref
  38. O. Ershova, V. Dobrovolsky, and O. Khyzhun, Fiz. Khim. Tverd. Tila, 12, No. 4: 1044 (2011) (in Ukrainian).
  39. V. D. Dobrovolsky, O. G. Ershova, and Yu. M. Solonin, Voden' v Alternatyvniy Energetytsi ta Novitnikh Tekhnologiyakh [Hydrogen in the Alternative Power Industry and Novel Technologies], 1: 136 (2013) (in Ukrainian).
  40. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, and O. Yu. Koval, Metallofiz. Noveishie Tekhnol., 39, No. 11: 1557 (2017) (in Ukrainian). Crossref
  41. O. G. Ershova, V. D. Dobrovolsky, and Yu. M. Solonin, Vidnovlyuvana Energetika, 2: 26 (2017) (in Ukrainian).
  42. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, and A. Yu. Koval, Vidnovlyuvana Energetika, 1: 23 (2019) (in Ukrainian).
  43. Claudia Zlotea, Jun Lub, and Yvonne Andersson, J. Alloys Compd., 426: 357 (2006). Crossref
  44. Claudia Zlotea, Acta Mater., 56: 2421 (2008). Crossref
  45. Tai Yang, Qiang Li, Ning Liu, Chunyong Liang, Fuxing Yin, and Yanghuan Zhang, J. Power Sources, 378: 636 (2018). Crossref
  46. Xiaoying Shi, Jianxin Zou, Chuan Liu, Lifang Cheng, Dejiang Li, Xiaoqin Zeng, and Wenjiang Ding, Int. J. of Hydrogen Energy, 39: 8303 (2014). Crossref
  47. C. Zlotea, M. Sahlberg, P. Moretto, and Y. Andersson, J. Alloys Compd., 489: 375 (2010). Crossref
  48. Z. Li, X. Liu, L. Jiang, and S. Wang, Int. J. Hydrogen Energy, 32: 1869 (2007). Crossref
  49. S. L. Röntzsch and B. Kieback, Int. J. Hydrogen Energy, 34: 7749 (2009). Crossref
  50. Q. A. Zhang, L.X. Zhang, and Q .Q. Wang, J. Alloys Compd., 551: 376 (2013). Crossref
  51. O. G. Ershova, V. D. Dobrovolsky, and Yu. M. Solonin, J. Mater. Sci., 51, No. 4: 457 (2016). Crossref
  52. V. D. Dobrovolsky, O. G. Ershova, Yu. M. Solonin, and O.Y, Khyzhun, Powder Metallurgy Metal Ceramics, 55, No. 7: 477 (2016). Crossref
  53. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, and A. Yu. Koval, Fiz. Khim. Tverd. Tila, 16, No. 3: 576 (2015) (in Ukrainian). Crossref
  54. O. G. Ershova, V. D. Dobrovolsky, Yu. M. Solonin, and A. Yu. Koval, Vidnovlyuvana Energetyka, 3: 5 (2015) (in Ukrainian).
  55. O. G. Ershova, V. D. Dobrovolsky, and Yu. M. Solonin, Proc. of XVIII International Scientific and Practical Conference 'Renewable Energy and Energy Efficiency in the XXI Century' (25-27 Sep., 2017) (Kyiv: 2017), p. 173 (in Ukrainian).