Structure and Mechanical Properties of Al–Cu/C Composites Produced by Mechanical Alloying and Solid-State Sintering

Ya. I. Matvienko$^{1}$, S. S. Polishchuk$^{1}$, A. D. Rud$^{1}$, T. M. Mika$^{1}$, V. I. Bondarchuk$^{1}$, S. A. Demchenkov$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 12.05.2019. Download: PDF

Hypoeutectic and eutectic Al–Cu composites with 5% wt. of graphite additives are prepared using mechanical alloying (MA) of elemental powders and following hot pressing of mixtures at 480–510°C and 30 MPa. The obtained powders and sintered samples are studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The MA during 8 hours of all powder compositions results in the formation of Cu$_9$Al$_4$ and CuAl$_2$ phases as well as Al(Cu) solid solution. Subsequent sintering leads to the decomposition of the metastable Cu$_9$Al$_4$ phase. As shown, the crystalline structure of graphite additives transforms into amorphous one during MA, while the consequent sintering results in the Al$_4$C$_3$ carbide formation. Moreover, the introduction of graphite additives leads to increasing of both the highly dispersed particles amount in mechanically alloyed powder and the volume fraction of metastable Cu$_9$Al$_4$ and stable CuAl$_2$ intermetallic phases. The effects of both graphite additives and Cu content (17 and 33% wt.) on microstructure and mechanical properties of sintered Al–Cu composites are considered. Possible strengthening mechanisms for Al–Cu and Al–Cu/C composites are discussed.

Key words: Al–Cu/C, metal matrix composites, mechanical alloying, solid-state sintering, powder metallurgy.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i08/1035.html

DOI: https://doi.org/10.15407/mfint.41.08.1035

PACS: 61.05.cp, 62.25.-g, 64.60.My, 64.70.kd, 81.20.Ev, 81.20.Wk

Citation: Ya. I. Matvienko, S. S. Polishchuk, A. D. Rud, T. M. Mika, V. I. Bondarchuk, and S. A. Demchenkov, Structure and Mechanical Properties of Al–Cu/C Composites Produced by Mechanical Alloying and Solid-State Sintering, Metallofiz. Noveishie Tekhnol., 41, No. 8: 1035—1054 (2019) (in Ukrainian)


REFERENCES
  1. J. R. Davis, Aluminum and Aluminum Alloy (Handbook Committee ASM International: 1993).
  2. I. Polmear, Light Alloys-From Traditional Alloys to Nanocrystals, 4th Ed. (Amsterdam: Elsevier: 2006).
  3. J.-P. Immarigeon, R. T. Holt, A. K. Koul, L. Zhao, W. Wallace, and J. C. Beddoes, Materials Characterization, 35: 41 (1995). Crossref
  4. R. A. Witik, J. Payet, V. Michaud, C. Ludwig, and Jan-Anders E. Månson, Composites Part A: Appl. Sci. Manufacturing, 42: 1694 (2011). Crossref
  5. T. Shanmugasundarama, M. Heilmaier, B. Murty, and V. Sarma, Mater. Sci. Eng. A, 527: 7821 (2010). Crossref
  6. J. M. V. Quaresma, C. A. Santos, and A. Garcia, Metall. Mater. Trans. A, 31: 3167 (2000). Crossref
  7. H. Bei, G. M. Pharr, and E. P. George, J. Mater. Sci., 39, No. 12: 3975 (2004). Crossref
  8. C. S. Tiwary, D. R. Mahapatra, and K. Chattopadhyay, Appl. Phys. Lett., 115: 203502 (2014). Crossref
  9. Q. Lei, B. P. Ramakrishnan, S. Wang, Y. Wang, J. Mazumber, and A. Misra, Mater. Sci. Eng. A, 706: 115 (2017). Crossref
  10. P. Wang, L. Deng, K. P. Prashanth, S. Pauly, J. Eckert, and S. Scudino, J. Alloys Compd., 735: 2263 (2018). Crossref
  11. I. Lichioiu, I. Peter, B. Varga, and M. Rosso, J. Mater. Sci. Technol., 30, No. 4: 394 (2014). Crossref
  12. E. Çadirli, Met. Mater. Int., 19: 411 (2013). Crossref
  13. R. Molina, P. Amalberto, and M. Rosso, Metall. Sci. Technol., 29-2 (2011).
  14. M. Aravind, P. Yu, M. Yu. Yau, and D. H. L. Ng, Mater. Sci. Eng. A, 380: 384 (2004). Crossref
  15. K. Kim, D. Kim, K. Park, M. Cho, S. Cho, and H. Kwon, Materials. 12, No. 9: 1546 (2019). Crossref
  16. D. W. Wolla, M. J. Davidson, and A. K. Khanra, Mater. Design., 59: 151 (2014). Crossref
  17. Q. Kong, L. Lian, Y. Liu, and J. Zhang, Mater. Manuf. Processes, 29: 1232 (2014). Crossref
  18. C. Suryanarayana, Prog. Mater. Sci., 1: 46 (2001). Crossref
  19. P. R. Matli, U. Fareeha, R. A. Shakoor, and A. M. A. Mohamed, J. Mater. Res. Technol., 7: 165 (2018). Crossref
  20. F. Li, K. N. Ishihara, and P. H. Singu, Metall. Trans. A, 22: 2849 (1991). Crossref
  21. R. Besson, M. Avettand-Fenoel, L. Thuinet, J. Kwon, A. Addad, P. Roussel, and A. Lergis, Acta Mater., 87, No. 1: 216 (2015). Crossref
  22. R. Casati and M. Vedani, Metals, 4: 65 (2014). Crossref
  23. H. Faleh, M. Noori, and S. Florin, Adv. Mater. Res., 1128: 134 (2015). Crossref
  24. F. H. Latief and El-Dayed M. Sherif, J. Ind. Eng. Chem., 18: 2129 (2012). Crossref
  25. A. Santos-Beltra, R. Goytia-Reyes, H. Morales-Rodriguez, V. Gallegos-Orozco, M. Santos-Beltrán F. Baldenebro-Lopez, and R. Martínez-Sánchez, Mater. Characterization, 106: 368 (2015). Crossref
  26. J. Mendoza-Duartea, I. Estrada-Guela, F. Robles-Hernandez et al, Mater. Res., 19: 13 (2016). Crossref
  27. J. L. R. Hernández, J. J. R. Cruz, C. Y. Gómez, O. A. Coreño, and R. Martínez-Sanchez, Mater. Trans., 51: 1120 (2010). Crossref
  28. D. H. Nam, Seung I. Cha, Byung K. Lim, Hoon M. Park, Do S. Han, and Soon H. Hong, Carbon, 50: 2417 (2012). Crossref
  29. H. R. Sabouni and S. Sabooni, Russian J. Non-Ferrous Metals., 58, Iss. 6: 656 (2017). Crossref
  30. J. Zhao, Yu. Duan, X. Wang, and B. Wang, J. Phys. D: Appl. Phys., 46: 015304 (2013). Crossref
  31. S. R. Ignatovich, I. M. Zakiev, and D. I. Borisov, Strength Mater., 38, Iss. 4: 428 (2006). Crossref
  32. Ya. I. Matvienko, A. Rud, S. Polishchuk, Yu. Zagorodniy, N. Rud, and V. Trachevski, Appl. Nanosci. (2019). Crossref
  33. D. Y. Ying and D. L. Zhang, J. Alloys Compd., 311: 275 (2000). Crossref
  34. F. Rosa, J. R. Romero, J. L. Lopez-Mirinda, A. G. Hernandez-Torres, and G. Rosas, Intermetallics, 61: 51 (2015). Crossref
  35. A. N. Streletskii, I. V. Kolbanev, A. B. Borunova, A. V. Leonov, and P. Yu. Butyagin, Colloid Journal, 66: 729 (2004). Crossref
  36. J. L. Kennedy, T. D. Drysdale, and D. H. Gregory, Green Chemistry, 17 (1): 285 (2015). Crossref
  37. J. C. de Lima, D. M. Triches, V. H. F. dos Santos, and T. A. Grandi, J. Alloy. Compd., 282: 258 (1999). Crossref
  38. N. Larionova, R. Nikonova, and V. Ladyanov, Adv. Powder Technol., 29 (2): 399 (2018). Crossref
  39. M. Draissia, H. Boudemagh, and M. Y. Debili, Phys. Scr., 69: 348 (2004). Crossref
  40. J. Fan and J. Njuguna, 1 – An Introduction to Lightweight Composite Materials and Their Use in Transport Structures, in Book Lightweight Composite Structures in Transport (Ed. J. Njuguna) (Woodhead Publishing: 2016), p. 3–34. Crossref
  41. M. Braunovic, L. Rodrigue, and D. Gagnon, 2008 Proceedings of the 54th IEEE Holm Conference on Electrical Contacts (27–29 Oct., 2008, Orlando, Florida). Crossref
  42. C.-L. Chen, A. Richter, and R. C. Thomson, Intermetallics, 17, No. 8: 634 (2009). Crossref
  43. R. Deaquino-Lara, E. Gutiérrez-Castañeda, I. Estrada-Guel, G. Hinojosa-Ruiz, E. García-Sánchez, J. M. Herrera-Ramírez, R. Pérez-Bustamante, and R. Martínez-Sánchez, Mater. Design. 53: 1104 (2014). Crossref
  44. M. Besterci, J. Mater. Product Technol., 28, Nos. 3/4: 448 (2007). Crossref
  45. R. Gaillac, P. Pullumbi, and F. Coudert, J. Phys.: Condens. Matter., 28: 275201 (2016). Crossref
  46. B. Guo, B. Chen, X. Zhang et al., Carbon. 135: 224 (2018). Crossref
  47. L. Cui, R. Lu, and D. Ma, Materials, 11: 538 (2018). Crossref
  48. H. Kwon, S. Cho, M. Leparoux, and A. Kawasaki, Nanotechnology, 23: 225704 (2012). Crossref
  49. Dong H. Nam, Seung I. Cha, Byung K. Lim, Hoon M. Park, and Do S. Han, Carbon, 50: 2417 (2012). Crossref