High-Gradient Magnetic Separation Method for Weakly Magnetic Particles: an Industrial Application

Chouki Farsi$^{1}$, Salah Amroune$^{1}$, Mustafa Moussaoui$^{2}$, Barhm Mohamad$^{3}$, Houria Benkherbache$^{1}$

$^{1}$Pôle Universitaire de M’sila, Laboratoire de Matériaux et Mécanique des Structures, Université Mohamed Boudiaf de M’sila, BP 166 M’sila 28000, Algérie
$^{2}$Université Ziane Achour de Djelfa, BP 3117 Djelfa 17000, Algérie
$^{3}$Faculty of Mechanical Engineering and Informatics, University of Miskolc, H-3515 Miskolc, Hungary

Received: 02.10.2018; final version - 12.05.2019. Download: PDF

The high-gradient magnetic separation process is a technique used in heavy industries, particularly steel mills, to extract magnetic particles from mixtures. The difficulty of separating the slightly magnetic particles from the nonmagnetic ones lies in the distribution of the magnetic field and the fineness of their class to be separated. A use of different separation matrix profile is implemented, making it possible to act on the value of the gradient of the inhomogeneous magnetic field. Different matrixes are tested and the results obtained experimentally allows to choose the most efficient matrix form in the operation of extraction which increased by 11% in magnetic fraction yield, 15% iron content and 17% of extraction degree relative to the John’s matrix. This matrix used is consistent with that cited in literatures. The separation technology used can extend its useful application to small particles from very weakly magnetic materials. Its exploitation will result in the method of reducing the degree of pollution and improvement the process of extraction of minerals that has an impact on the environment and on human health as a result a high level of extraction.

Key words: magnetic matrix, high-gradient magnetic separation process (HGMS), gradient of magnetic field, magnetic particles.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i08/1103.html

DOI: https://doi.org/10.15407/mfint.41.08.1103

PACS: 75.20.En, 81.05.Bx, 81.40.Rs, 85.70.Ay, 91.60.Pn

Citation: Chouki Farsi, Salah Amroune, Mustafa Moussaoui, Barhm Mohamad, and Houria Benkherbache, High-Gradient Magnetic Separation Method for Weakly Magnetic Particles: an Industrial Application, Metallofiz. Noveishie Tekhnol., 41, No. 8: 1103—1119 (2019)

  1. L. R. Avens, L. A. Worl, K. J. DeAguero, D. D. Padilla, F. C. Prenger, W. F. Stewart, D. D. Hill, and T. L. Tolt, Abstr. Conf. Magnetic Separation for Soil Decontamination (28 Feb-4 Mar, 1993, United States).
  2. A. Matsuzaki and S. Nagakura, Journal of Luminescence, 12: 787 (1976). Crossref
  3. T. Kakeshita, K. Shimizu, S. Funada, and M. Date, Acta Mater., 33, No. 8: 1381 (1985). Crossref
  4. Y. Xu, J. Chen, B. Jiang, Y. Liu, and J. Ni, Int. J. Mech. Sci., 142: 86 (2018). Crossref
  5. J. Torbet, J. M. Freyssinet, and G. Hudry-Clergeon, Nature, 289: 91 (1981). Crossref
  6. W. Ge, A. Encinas, E. Araujo, and S. Song, Results Phys., 7: 4278 (2017). Crossref
  7. S. Miltenyi, W. Müller, W. Weichel, and A. Radbruch, Cytom. A, 11, No. 2: 231 (1990). Crossref
  8. C. T. Yavuz, J. T. Mayo, W. Y. William, A. Prakash, J. C. Falkner, S. Yean, and D. Natelson, Science, 314 (5801): 964 (2006). Crossref
  9. J. J. Hubbuch, D. B. Matthiesen, T. J. Hobley, and O. R. Thomas, Bioseparation, 10: 99 (2001). Crossref
  10. M. A. M. Gijs, Microfluid. Nanofluid., 1: 22 (2004). Crossref
  11. J. Svoboda, and T. Fujita, Miner. Eng., 16: 785 (2003). Crossref
  12. R. R. Dauer and E. H. Dunlop, Biotechnol. Bioeng., 37: 1021 (1991). Crossref
  13. A. M. Turkenich, Physical Separation in Science and Engineering, 10: 207 (2001). Crossref
  14. J. Svoboda, Miner. Eng., 14: 1493 (2001). Crossref
  15. V. Karmazin, Magnitnye, Elektricheskie i Spetsialnye Metody Obogashcheniya Poleznykh Iskopaemykh (Moscow: Gornaya Kniga: 2017). ISBN: 978-5-98672-458-4.
  16. V. I. Karmazin and V. V. Karmazin, Magnitnye i Elektricheskie Metody Obogashcheniya. Uchebnik dlya Vuzov (Moscow: Nedra: 1988). ISBN 5-247-00169-9.
  17. S. G. Ozkan, Magn. Electr. Separ., 10: 213 (2001). Crossref
  18. K. P. Ossenkopp, Psychol. Rep., 30: 371 (1972). Crossref
  19. L. Woltjer, Proc. Natl. Acad. Sci., 44, 489 (1958). Crossref
  20. P. Démoulin and M. A. Berger, Sol. Phys., 215: 203 (2003). Crossref