Molecular Dynamics Study of the Hydrogen and Carbon Effect on Mobility of Grain Boundaries in $\alpha$-Iron

S. M. Teus, V. G. Gavriljuk

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 02.06.2019. Download: PDF

The effect of hydrogen and carbon on the mobility of a grain boundary in the $\alpha$-iron is studied by means of molecular dynamics. The calculations are performed within the linear elasticity approach. Both hydrogen and carbon atoms reveal a strong tendency to grain boundary segregation. As shown, the hydrogen atoms, located in the vicinity of the grain boundaries, decrease the activation enthalpy of grain boundary migration, which results in their higher mobility in comparison with the hydrogen-free case. In contrast, the carbon atoms strongly pin the grain boundary at its initial position within the whole range of temperatures and also under the strain used in the modelling. The obtained results are interpreted based on the opposite effect of the studied interstitial elements on the atomic interactions: the increase in the concentration of free electrons due to hydrogen and its decrease due to carbon. As supposed, the hydrogen-caused increase of grain boundaries mobility can be a reason for the early start of recrystallization, as it is observed in the hydrogen-charged iron-based alloys.

Key words: hydrogen, carbon, interatomic bonding, electron structure, grain boundary mobility, molecular dynamics.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i09/1187.html

DOI: https://doi.org/10.15407/mfint.41.09.1187

PACS: 61.50.Lt, 61.72.jj, 61.72.Mm, 61.72.S-, 71.15.Pd, 71.20.-b

Citation: S. M. Teus and V. G. Gavriljuk, Molecular Dynamics Study of the Hydrogen and Carbon Effect on Mobility of Grain Boundaries in $\alpha$-Iron, Metallofiz. Noveishie Tekhnol., 41, No. 9: 1187—1203 (2019)


REFERENCES
  1. L. C. Lim and R. Raj. Acta Metal., 32(8): 1183 (1984). Crossref
  2. L. C. Lim and R. Raj, Acta Metal., 33(8):1577-1583 (1985). Crossref
  3. R. C Pond and D. A. Smith, Philos. Mag., 36(2): 353 (1977). Crossref
  4. N. Hansen, A, Horsewell T. Leffers, and H. Lilholt, Proceedings of the 2nd Riso International Symposium on Metallurgy and Materials Science (September 14-18, Riso) (Denmark, Roskilde: National Laboratory: 1981).
  5. T. N. Backer, Yield, Flow and Fracture of Polycrystals (London: Applied Science Pub.: 1983).
  6. T. Watanabe, J Phys. Colloques., 49(C5): 507 (1988). Crossref
  7. L. S. Shvindlerman and B. B. Straumal. Acta Metall., 33(9): 1735 (1985). Crossref
  8. K. T. Aust, U. Erb, and G. Palumbo. Mater. Sci. Eng. A, 176: 329 (1994). Crossref
  9. W. T. Geng, A. J. Freeman, R. Wu, and G.B. Olson, Phys. Rev. B, 62: 6208 (2000). Crossref
  10. J. P. Buban, K. Matsunaga, J. Chen, N. Shibata, W. Y. Ching, T. Yamamoto, and Y. Ikuhara, Science, 311: 212 (2006). Crossref
  11. M. Yamaguchi, Metall. Mater. Trans., 42: 319 (2011). Crossref
  12. D. N. Seidman, B. W. Krakauer, and D. Udler, J. Phys. Chem. Solids, 55(10): 1035 (1994). Crossref
  13. A. Sutton and R. Balluffi, Interfaces in Crystalline Materials (Oxford, UK: Clarendon Press: 1995).
  14. E. D. Hondros and M. P. Seah, Int. Met. Rev., 22: 262 (1977). Crossref
  15. M. Yamaguchi, M. Shiga, and H. Kaburaki. Science, 307: 393 (2005). Crossref
  16. J. S. Wang, Eng. Fract. Mech., 68(6): 647 (2001). Crossref
  17. T. Ohmisawa, S. Uchiyama, and N. Nagumo, J. Alloys Compd., 356-357: 290 (2003). Crossref
  18. Yu. N. Petrov, Scr. Metall. Mater., 29: 1471 (1993). Crossref
  19. K. H. Lo, C. H. Shek, and J. K. L. Lai, Mater. Sci. Eng. R, 65: 39 (2009). Crossref
  20. P. Novak, R. Yuan, B. P. Somerday, P. Sofronis, and R. O. Ritchie, J. Mech. Phys. Solids, 58: 206 (2010). Crossref
  21. L. Zhong, R. Wu, A. J. Freeman, and G. B. Olson, Phys. Rev. B, 62 (21): 13938 (2000). Crossref
  22. H. Fukushima and H. K. Birnbaum. Acta Metall., 32(6): 851 (1984). Crossref
  23. J. W. Cahn and J. E. Taylor, Acta Mater., 52(14): 4887 (2004). Crossref
  24. J. W. Cahn, Y. Mishin, and A. Suzuki, Acta Mater., 54 (19): 4953 (2006). Crossref
  25. T. J. Rupert, D. S. Gianola, Y. Gan, and K. J. Hemker, Science, 326: 1686 (2009). Crossref
  26. B. B. Straumal, V. G. Sursayeva, and L. S. Shvindlerman, Phys. Met. Metalloved., 49: 102 (1980).
  27. V. Yu. Aristov, Ch. V. Kopetsky, V. G. Sursayeva, and L. S. Shvindlerman, Reports of USSR Academy of Sciences, 225 (14): 804 (1975) (in Russian).
  28. L. S. Shvindlerman, G. Gottstein, and D. A. Molodov, phys. status solidi (a), 160 (2): 419 (1997). Crossref
  29. S. Plimpton, J. Comp. Phys., 117 (1): 1 (1995). Crossref
  30. S. Ranganathan, Acta Cryst., 21: 197 (1966). Crossref
  31. M. A. Fortes, phys. status solidi (b), 54 (1): 311 (1972). Crossref
  32. D. E. Jiang and E. A. Carter, Phys. Rev B, 70: 064102 (2004). Crossref
  33. J. K. Norskov, Phys. Rev. B, 26 (6): 2875 (1982). Crossref
  34. A. Ramasubramaniam, M. Itakura, and E. Carter, Phys. Rev. B, 79 (17): 174101 (2009). Crossref
  35. M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, and M. Asta, Philos. Mag., 83: 3977 (2003). Crossref
  36. G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han, and A. V. Barashev, J. Phys. Condens. Mat., 16 (27): S2629 (2004). Crossref
  37. M. W. Finnis and J. E. Sinclair, Philos. Mag A, 50: 45 (1984). Crossref
  38. D. J. Hepburn and G. J. Ackland, Phys. Rev. B, 78 (16): 165115 (2008). Crossref
  39. M. Parrinello and A. Rahman, J. Appl Phys., 52: 7182 (1981). Crossref
  40. S. Nose, Mol. Phys., 52: 255 (1984). Crossref
  41. W. G. Hoover, Phys. Rev. A, 31 (3): 1695 (1985). Crossref
  42. H. Zhang, M. I. Mendelev, and D. J. Srolovitz, Acta Mater., 52 (9): 2569 (2004). Crossref
  43. H. Zhang, M. I. Mendelev, and D.J. Srolovitz, Scr. Mater., 52: 1193 (2005). Crossref
  44. B. Schonfelder, P. Keblinski, D. Wolf, and S. R. Phillpot, Mater. Sci. Forum, 294-296: 9 (1998). Crossref
  45. D. L. Olmsted, E. A. Holm, and S. M. Foiles, Acta Mater., 57 (13): 3704 (2009). Crossref
  46. K. G. F. Janssens, D. Olmsted, E. A. Holm, S. M. Foiles, S. J. Plimpton, and P. M. Derlet, Nature Mater., 5: 124 (2006). Crossref
  47. D. L. Olmsted, S. M. Foiles, and E. A. Holm, Scr. Mater., 57: 1161 (2007). Crossref
  48. Z. T. Trautt, M. Upmanyu, and A. Karma, Science, 314: 632 (2006). Crossref
  49. S. M. Foiles and J. J. Hoyt, Acta Mater., 54 (12): 3351 (2006). Crossref
  50. M. I. Mendelev, C. Deng, C. A. Schuh, and D. J. Srolovitz, Modelling Simul. Mater. Sci. Eng., 21: 045017 (2013). Crossref
  51. J.-E. Brandenburg and D. A. Molodov, Scr. Mater., 163: 96 (2019). Crossref
  52. J. M. Rickman, S. R. Phillpot, D. Wolf, D. L. Woodraska, and S. Yip, J. Mater. Res., 6 (11): 2291 (1991). Crossref
  53. D. Faken and H. Jonsson, Comput. Mater. Sci., 2 (2): 279 (1994). Crossref
  54. H. Tsuzuki, P. S. Branicio, and J. P. Rino, Comput. Phys. Commn., 177 (6): 518 (2007). Crossref
  55. A. Inoue, H. Nitta, and Y. Iijima, Acta Mater., 55 (17): 5910 (2007). Crossref
  56. J. F. Lutsko, D. Wolf, S. Yip, S. R. Phillpot, and T. Nguyen, Phys. Rev. B, 38 (16): 11572 (1988). Crossref
  57. J. F. Lutsko, D. Wolf, S. R. Phillpot, and S. Yip, Phys. Rev. B, 40 (5): 2841 (1989). Crossref
  58. B. Schonfelder, D. Wolf, S. R. Phillpot, and M. Furtkamp, Interface Sci., 5 (4): 245 (1997). Crossref
  59. K. Lucke and H.-P. Stuwe, (Ed. L. Himmel) Recovery and Recrystallization of Metals (New York: Interscience: 1963), p. 171.
  60. M. Yamaguchi, J. Kameda, K.-I. Ebihara, M. Itakura, and H. Kaburaki, Philos, Mag., 92 (11): 1349 (2012). Crossref
  61. S. M. Teus, V. F. Mazanko, J.-M. Olive, and V. G. Gavriljuk, Acta Mater., 69: 105 (2014). Crossref
  62. V. M. Shyvanyuk, Y. Mine, and S. M. Teus, Scr. Mater., 67: 979 (2012). Crossref
  63. C. Herrera, C. L. Plaut, and A. F. Padilha, Mater. Sci. Forum, 550: 423 (2007). Crossref
  64. A. A. Smirnov, Metal Physics, 13 (11): 21 (1991) (in Russian).
  65. V. G. Gavriljuk, V. N. Bugaev, Yu. N. Petrov, A. V. Tarasenko, and B. Z. Yanchitsky, Scr. Mater., 34 (6): 903 (1996). Crossref
  66. R. B.McLellan, J. Phys. Chem. Solids, 49 (10): 1213 (1988). Crossref
  67. N. F. Mott, Proc. Phys. Soc., 60: 391 (1948). Crossref
  68. D. Turnbull, Trans AIME, 191: 661 (1951). Crossref
  69. C. M. F. Rae and D. A. Smith, Philos. Mag. A, 41 (4): 477 (1980). Crossref
  70. S. M. Teus, V. N. Shivanyuk, B. D. Shanina, and V. G. Gavriljuk, phys. status solidi (a), 204 (12): 4249 (2007). Crossref
  71. S. M. Teus and V. G. Gavriljuk, Materials Lett., 258: 126801 (2020). Crossref
  72. V. G. Gavriljuk, B. D. Shanina, V. N. Shyvanyuk, and S. M. Teus, Corros. Rev., 31 (2): 33 (2013). Crossref
  73. S. Simonetti, M. E. Pronsato, G. Brizuela, and A. Juan, Appl. Surf. Sci., 217: 56 (2003). Crossref