Crack Growth Resistance and Segregation in Amorphous Alloy Fе$_{73.6}$Si$_{15.8}$B$_{7.2}$Cu$_{1.0}$Nb$_{2.4}$ (FINEMET) under Microindentation

M. A. Vasylyev$^{1}$, I. V. Zagorulko$^{1}$, S. M. Voloshko$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received: 15.07.2019. Download: PDF

The efficiency of the microindentation method for studying the effects of local ductility and crack growth resistance of amorphous ribbons of Fе$_{73.6}$Si$_{15.8}$B$_{7.2}$Cu$_{1.0}$Nb$_{2.4}$ alloy (FINEMET) is grounded. The microindentation method used in this work is based on a specific method of local plastic deformation by the Vickers diamond pyramid indenting under various loads. For microindenter exposure, a standard PMT-3 microhardness tester is used. Microhardness is measured on the free side of the rapidly cooled ribbons of the investigated alloy. The measurements are carried out under loads in the range of 0.196–1.962 N and exposure of 10 s. A more detailed analysis of the indentation zone morphology is carried out depending on the applied load for thin amorphous ribbons of Fе$_{73.6}$Si$_{15.8}$B$_{7.2}$Cu$_{1.0}$Nb$_{2.4}$ alloy. The processes of local deformation at room temperature are considered from the standpoint of the mechanism of heterogeneous deformation, which develops through the nucleation and propagation of shear bands of different morphologies. At high loads, the formation of shear bands due to the redistribution of the strain energy between scaly shears and crack-like shear lines is the competing process. The method of local chemical analysis is used to study the deformation-induced segregation effects near imprints. The driving forces of such atomic migration during deformation can be both stress and concentration gradients in an amorphous ribbon, caused by the process of strain nanocrystallization.

Key words: amorphous alloy, microindentation, microhardness, brittleness, shear bands, segregation.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i09/1217.html

DOI: https://doi.org/10.15407/mfint.41.09.1217

PACS: 61.43.Dq, 62.20.mj, 62.20.mt, 62.20.Qp, 68.35.Dv, 81.40.Np

Citation: M. A. Vasylyev, I. V. Zagorulko, and S. M. Voloshko, Crack Growth Resistance and Segregation in Amorphous Alloy Fе$_{73.6}$Si$_{15.8}$B$_{7.2}$Cu$_{1.0}$Nb$_{2.4}$ (FINEMET) under Microindentation, Metallofiz. Noveishie Tekhnol., 41, No. 9: 1217—1230 (2019) (in Ukrainian)


REFERENCES
  1. V. V. Nemoshkalenko, Amorfnye Metallicheskiye Splavy (Kiev: Naukova Dumka: 1987) (in Russian).
  2. V. V. Maslov, V. K. Nosenko, L. E. Taranenko, and A. P. Brovko, Fizika Metallov i Metallovedenie, 91: 47 (2001) (in Russian).
  3. A. M. Glezer and B. V. Molotilov, Struktura i Mekhanicheskie Svoystva Amorfnykh Splavov (Moscow: Metallurgiya: 1992) (in Russian).
  4. A. M. Glezer, I. Ye. Permyakova et al., Mekhanicheskoye Povedenie Amorfnykh Splavov (Novokuznetsk: Izdvo SibGIU: 2006) (in Russian).
  5. A. M. Glezer, B. V. Molotilov, and O. L. Utevskaya, Dokl. USSR Academy of Sciences, 283: 106 (1985) (in Russian).
  6. V. P. Alekhin and V. A. Khonik, Struktura i Fizicheskiye Zakonomernosti Deformatsii Amorfnykh Splavov (Moscow: Metallurgiya: 1992) (in Russian).
  7. N. V. Novikov, S. N. Oak, and S. I. Bulychov, Zavodskaya Laboratiya, 54: 60 (1988) (in Russian). Crossref
  8. A. G. Evans and E. A. Charles, J. American Ceramic Soc., 59: 371 (1976). Crossref
  9. G. A. Gogotsi and A. V. Bashta, Problemy Prochnosti, 9: 49 (1990) (in Russian).
  10. Yu. I. Golovin, Nanoindentirovanie i Ego Vozmozhnosti (Moscow: Mashinostroenie: 2009).
  11. C. B. Ponton and R. D. Rawlings, Mater. Sci. Technol., 5: 865 (1989). Crossref
  12. A. M. Glezer, I. Ye. Permyakova, and V. A. Fedorov, Fundamentalnye Problemy Sovremennogo Materialovedeniya, 2: 13 (2005) (in Russian).
  13. M. N. Vereshchagin, V. G. Shepelevich, O. M. Ostrikov, and S. N. Shchybrankova, Kristallografiya, 47: 691 (2002) (in Russian).
  14. P. Rezaei-Shahreza, A. Seifoddini, and S. Hasani, J. Alloys Compd., 738: 197 (2018). Crossref
  15. H. R. Lashgari, Z. Chen, X. Z. Liao, and D. Chu, Mater. Sci. Eng. A, 626: 480 (2015). Crossref
  16. Yu. N. Ivashchenko, Yu. V. Mil'man, S. V. Pan et al., Metallofizika, 7: 1107 (1989) (in Russian).
  17. V. Ya. Bayankin, V. Yu. Vasil'yev, A. Kh. Kadikova i dr., Izvestiya AN SSSR. Seriya Fizicheskaya, 50: 1700 (1986) (in Russian).
  18. S. D. Gertsriken and I. Ya. Dekhtyar', Diffuziya v Metallakh i Splavakh v Tverdoy Faze (Moscow: Gos. Izd. Fiz.-Mat. Lit.: 1960) (in Russian).
  19. I. B. Volkova, M. A. Baranov, and V. Ya. Bayankin, Materialovedenie, 6: 2 (1998).
  20. Ya. Ye. Geguzin and M. A. Krivoglaz, Dvizhenie Makroskopicheskikh Vklyucheniy v Tverdykh Telakh (Moscow: Metallurgiya: 1971) (in Russian).
  21. A. S. Bakai, Topics in Applied Physics, 72: 209 (1994).
  22. A. K. Panda, M. Manimaran, A. Mitra, and S. Basu, Appl. Sur. Sci., 235: 475 (2004).
  23. L. G. Korshunov and N. L. Chernenko, Fizika Metallov i Metallovedenie, 106: 635 (2008) (in Russian). Crossref
  24. W. H. Jiang and M. Atzmon, Acta Mater., 51: 4095 (2003). Crossref
  25. A. M. Glezer, I. Ye. Permyakova, and S. Ye. Manayenkov, Dokl. RAN, 418: 181 (2008) (in Russian).
  26. W. H. Jiang, F. E. Pinkerton, and M. J. Atzmon, J. Appl. Phys., 93: 9287 (2003). Crossref
  27. V. P. Naberezhnykh, O. N. Beloshov, B. I. Selyakov, and V. M. Yurchenko, Metallofizika, 14: 9 (1992) (in Russian).
  28. T. I. Bratus', M. A. Vasil'yev, and V. T. Cherepin, Metallofizika, 5: 71 (1983) (in Russian).