Effect of Deformation Ratio on Texture and Properties of Titanium Alloy Tubes under Cold Rolling

V. S. Vakhrusheva, N. V. Hruzin

Prydniprovska State Academy of Civil Engineering and Architecture, 24a Chernyshevsky Str., UA-49600 Dnipro, Ukraine

Received: 24.07.2018; final version - 23.05.2019. Download: PDF

The processes of texture, structure and properties formation during Ti–3Al–2.5V titanium alloy tubes producing are considered. As found, a common degree of deformation of tube under the passes and the ratio of wall and diameter deformations have the most significant effect on the formation of the texture and properties at the stage of cold rolling. The conditions for creating the maximum amount of radial texture in metal tubes are determined, which ensures higher performance properties of products.

Key words: titanium alloy, properties, texture, deformation, tubes, technology.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i10/1303.html

DOI: https://doi.org/10.15407/mfint.41.10.1303

PACS: 61.66.Dk, 62.20.F-, 68.55.jm, 81.20.Wk, 81.40.Ef, 81.40.Lm

Citation: V. S. Vakhrusheva and N. V. Hruzin, Effect of Deformation Ratio on Texture and Properties of Titanium Alloy Tubes under Cold Rolling, Metallofiz. Noveishie Tekhnol., 41, No. 10: 1303—1314 (2019) (in Russian)

  1. S. Moredith and J. Schemel, Journal of Testing and Evaluation, 18, Iss. 2: 98 (1990). Crossref
  2. C. E. Forney and N. S. Shemel, Ti-3Al-2.5V Seamless Tubing Engineering Guide (Washington: 1987).
  3. Yu. N. Loginov, V. V. Kotov, and V. T. Smirnov, Collect. Proc. Int. Conf. 'Sovremennye Dostizheniya v Teorii i Tekhnologii Plasticheskoy Obrabotki Metallov' (Saint Petersburg: 2005), p. 281 (in Russian).
  4. F. S. Zaimovskiy, A. V. Nikulina, and N. G. Reshetnikov, Zirconievye Splavy v Atomnoy Energetike [Zirconium Alloys in Nuclear Power Engineering] (Moscow: Energoizdat: 1981) (in Russian).
  5. G. B. Harris, Philos. Mag., 43, Iss. 336: 113 (1952). Crossref
  6. P. R. Morris, J. Appl. Phys., 30, Iss. 4: 595 (1959). Crossref
  7. J. J. Kearns, Thermal Expansion and Preferred Orientation in Zircaloy (Pittsburgh, PA, USA: Bettis Atomic Power Lab.: 1965).
  8. SAE AS 4076, SAE Int. 'Contractile Strain Ratio Testing of Titanium Hydraulic Tubing' (1987).
  9. B. A. Kolachyev, S. Ya. Betsofen, L. A. Bunin, and V. A. Volodin, Fiziko-Mekhanicheskie Svoystva Legkikh Konstruktsionnykh Splavov (Moscow: Metallurgiya: 1995) (in Russian).
  10. B. A. Kolachev, Fizicheskoe Metallovedenie Titana (Moscow: Metallurgiya: 1976) (in Russian).
  11. A. A. Babareko, Itogi Nauki i Tekhniki. Seriya 'Metallovedenie i Termicheskaya Obrabotka', 13: 79 (1980) (in Russian).
  12. E. B. Rubina and S. Ya. Betsofen, Fiz. Met. Metalloved., No. 4: 191 (1990) (in Russian).
  13. K. V. Kovtun, G. P. Kovtun, D. G. Malyhin et al., Abstr. XIX Int. Conf. in Physics of Radiation Phenomena and Radiation Materials Science (Sept. 6-11, 2010, Alushta) (N.A.S. of Ukraine: NNTs 'Kharkov Fiz.-Tekhn. Inst.' and NAEK 'Energoatom': 2010), p. 174 (in Russian).
  14. V. S. Vahrusheva and N. V. Hruzin, Metaloznavstvo ta Termichna Obrobka Metaliv, No. 3: 16 (2015) (in Ukrainian).