Oxidation of Hypereutectic Alloys Based on Nickel and ZhS32 with Titanium Carbide

T. S. Cherepova$^{1}$, G. P. Dmitrieva$^{1}$, A. V. Yarovytsyn$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 24.05.2019. Download: PDF

The kinetics of oxidation of hypereutectic alloys based on nickel and ZhS32 with titanium carbide at 1100°С is studied, and their melting temperature and heat resistance are determined. The content of carbide in alloys is 30% by volume (19% by weight). As found, the growth of the alloy mass on the basis of alloyed nickel is significantly lower in contrast to the alloy based on ZhS32 at annealing for 50 hours in air at 1100°С. The depth of corrosion damage of the nickel alloy surface after the annealing is also smaller, compared with the depth of damage of the alloy on the basis of ZhS32. As shown, the high heat resistance of the alloy based on nickel with titanium carbide is due to the optimal doping complex.

Key words: nickel alloys, titanium carbide, melting point, heat resistance.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i11/1469.html

DOI: https://doi.org/10.15407/mfint.41.11.1469

PACS: 62.20.Qp, 62.40.+A, 81.05.ue, 81.05.Ni, 81.30.Bx, 81.40.Pq

Citation: T. S. Cherepova, G. P. Dmitrieva, and A. V. Yarovytsyn, Oxidation of Hypereutectic Alloys Based on Nickel and ZhS32 with Titanium Carbide, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1469—1482 (2019) (in Ukrainian)

  1. Nageswara Rao Muktinutalapati, Advances in Gas Turbine Technology. Publisher in Tech., 293 (2011).
  2. H. I. Peychev, V. E. Zamkovoy, and N. V. Andreychenko, Aviatsionno-kosmicheskaya Tekhnika i Tekhnologiya, No. 9: 102 (2010) (in Russian).
  3. H. I. Peychev, A. K. Shurin, L. I. Ivshchenko, and V. E. Zamkovoy, Vestnik Dvigatelestroeniya, No. 2: 188 (2006) (in Russian).
  4. A. Yu. Butenko, A. M. Kostyn, and A. B. Malyy, Visnyk NUK, No. 5: 137 (2012) (in Russian).
  5. T. S. Cherepova, H. P. Dmytriyeva, A. V. Nosenko, and O. M. Semyrha, Nauka ta Innovatsii, 10, No. 4: 22 (2014) (in Ukrainian). Crossref
  6. G. P. Dmitrieva, T. S. Cherepova, T. O. Kosorukova, and V. I. Nichiporenko, Metallofiz. Noveishie Tekhnol., 37, No. 7: 973 (2015) (in Russian). Crossref
  7. H. P. Dmytryeva and T. S. Cherepova, Tekhnolohichni Systemy, No. 2: 46 (2017) (in Russian).
  8. H. Y. Peychev, A. K. Shuryn, V. E. Zamkovoy et al., Tekhnolohichni Systemy, No. 3: 40 (2000) (in Russian).
  9. I. A. Petryk and I. A. Peremylovs'kyy, Tekhnolohichni Systemy, No. 3: 90 (2001) (in Russian).
  10. K. A. Yushchenko, V. S. Savchenko, A. V. Yarovytsyn et al., Avtomat. Svarka, No. 8: 25 (2010) (in Russian).
  11. P. D. Zhemanyuk, I. A. Petryk, and S. L. Chyhyleychyk, Avtomat. Svarka, No. 8: 43 (2015) (in Russian).
  12. K. A. Yushchenko, A. V. Yarovytsyn, and N. O. Chervyakov, Avtomat. Svarka, No. 2: 3 (2017) (in Russian). Crossref
  13. R. F. Voytovych, Okislenie Karbidov i Nitridov (Kyiv: Naukova Dumka: 1981) (in Russian).
  14. A. K. Shurin, H. P. Dmytryeva, and N. A. Razumova Metally, No. 6: 67 (1988) (in Russian).
  15. A. K. Shuryn and H. P. Dmytryeva, Sovremennoe Sostoyanie i Perspektivy (Kyiv: YPM AN USSR: 1981), p. 28 (in Russian).
  16. T. S. Cherepova, H. P. Dmytriyeva, O. I. Dukhota, and M. V. Kindrachuk, Fizyko-Khimichna Mekhanika Materialiv, 52, No. 2: 29 (2016) (in Ukrainian). Crossref
  17. Dispersno-Uprochnennyy Splav na Osnove Nikelya: Patent No. 2016119 Russian Federation, C22C19/05. 5047394/02 (Declared 15.06.1992; Published 15.07.1994) (in Russian).
  18. V. M. Azhazha, V. Ya. Sverdlov, A. N. Ladyhyn, T. Yu. Rudycheva, P. D. Zhemanyuk, N. A. Lysenko, V. V. Klochykhyn, and A. A. Pedash, Voprosy Atomnoy Nauki Tekhniki, No. 6: 128 (2004) (in Russian).