The Influence of Sintering Temperature on Phase Composition and Mechanical Properties of $c$BN-Based Composites with Addition of Vanadium Compounds

K. V. Slipchenko$^{1}$, I. A. Petrusha$^{1}$, V. Z. Turkevich$^{1}$, D. A. Stratiichuk$^{1}$, V. M. Slipchenko$^{2}$, N. M. Bilyavina$^{3}$, D. V. Turkevich$^{1}$, V. M. Bushlya$^{4}$, J.-E. Stahl$^{4}$

$^{1}$V. M. Bakul Institute for Superhard Materials, NAS of Ukraine, 2 Avtozavodska Str., UA-04074 Kyiv, Ukraine
$^{2}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine
$^{4}$Hetman Petro Sahaidachnyi National Army Academy, 32 Heroes of Maidan Str., 79026 Lviv, Ukraine

Received: 21.02.2018; final version - 22.11.2019. Download: PDF

The influence of the sintering temperature on the mechanical properties of $c$BN-based ceramic composites with binders in form of vanadium compounds is investigated by methods of physical material science. Two compositions are selected for the study $c$BN–VC–Al and $c$BN–VN–Al with 60% vol. of $c$BN. Samples are obtained by high pressure high temperature sintering (HPHT) in toroid type apparatus with central hole 30. Sintering is conducted in temperature range of 1600–2450°C under pressure of 7.7 GPa. Sintering in the temperature range of 1600–1850°C induces the beginning of the interaction between components of the mixture and significant change in the elastic properties of the samples in both systems. As found, the maximum values of microhardness are achieved at 2150°C—40 GPa for a system with a carbide binder and 30 GPa in a system with vanadium nitride. The highest level of tool wear resistance during high-speed machining of steels is shown the samples of both groups sintered in the temperature range of 2000–2150°С.

Key words: boron nitride, carbides, vanadium, hardness, composites, sintering.



PACS: 07.35.+k, 07.85.Nc, 62.20.-x, 68.37.Hk, 81.20.Ev, 88.10.gk

Citation: K. V. Slipchenko, I. A. Petrusha, V. Z. Turkevich, D. A. Stratiichuk, V. M. Slipchenko, N. M. Bilyavina, D. V. Turkevich, V. M. Bushlya, and J.-E. Stahl, The Influence of Sintering Temperature on Phase Composition and Mechanical Properties of $c$BN-Based Composites with Addition of Vanadium Compounds, Metallofiz. Noveishie Tekhnol., 41, No. 12: 1599—1610 (2019) (in Ukrainian)

  1. R. H. Wentorf, Jr. and W. A. Rocco, Cubic Boron Nitride/Sintered Carbide Abrasive Bodies: Patent 3,767,371 U.S. (1973).
  2. P. Klimczyk, E. Benko, K. Lawniczak-Jablonska, E. Piskorska, M. Heinonen, A. Ormaniec, W. Gorczynska-Zawislan, and V. S. Urbanovich, J. Alloys Compd., 382, Iss. 1-2: 195 (2004). Crossref
  3. P. Alveen, D. McNamara, D. Carolan, N. Murphy, and A. Ivanković, Comput. Mater. Sci., 109: 115 (2015). Crossref
  4. I. A. Petrusha, V. M. Bushlya, A. S. Osipov, T. I. Smirnova, and N. M. Belyavina, Rock destructive and Metal Cutting Tools-Technique and Technology of Their Manufacturing and Application, 18: 338 (2015).
  5. Sh.-Yu. Chiou, Sh.-F. Ou, Yu-G. Jang, and K.-L. Ou, Ceram. Int., 39, Iss. 6: 7205 (2013). Crossref
  6. Yu. Yuan, X. Cheng, R. Chang, T. Li, J. Zang, Ya. Wang, Yi. Yu, J. Lu, and X. Xu, Diamond Relat. Mater., 69: 138 (2016). Crossref
  7. X. Z. Rong, T. Tsurumi, O. Fukunaga, and T. Yano, Diamond Relat. Mater., 11, Iss. 2: 280 (2002). Crossref
  8. J. Zhang, R. Tu, and T. Goto, J. Eur. Ceram. Soc., 31, Iss. 12: 2083 (2011). Crossref
  9. Indexable Inserts for Cutting Tools-Designation, ISO 1832: 2017.
  10. A. J. de Oliveira, A. E. Diniz, and D. J. Ursolino, J. Mater. Process. Technol., 209, Iss. 12-13: 5262 (2009). Crossref
  11. J. P. Costes, Y. Guillet, G. Poulachon, and M. Dessoly, Int. J. Mach. Tools Manuf., 47, Iss. 7-8: 1081 (2007). Crossref
  12. J. Angseryd, M. Elfwing, E. Olsson, and H.-O. Andrén, Int. J. Refract. Met. Hard Mater., 27, Iss. 2: 249 (2009). Crossref
  13. E. Benko, J. Morgiel, and T. Czeppe, Ceram. Int., 23, Iss. 1: 89 (1997). Crossref
  14. E. Benko, A. Wyczesany, and T. L. Barr, Ceram. Int., 26, Iss. 6: 639 (2000). Crossref
  15. L. Zhang, F. Lin, Zh. Lv, Ch. Xu, X. He, W. Wang, L. Li, Ch. Zhang, Ch. Chen, and L. Xia, Int. J. Refract. Met. Hard Mater., 50: 221 (2015). Crossref
  16. G. Leichtfried, G. Sauthoff, and G. E. Spriggs, Refractory, Hard and Intermetallic Materials (Germany: Springer Int. Publ.: 2002).
  17. I. A. Petrusha, A. S. Osipov, M. V. Nikishina, T. I. Smirnova, Yu. A. Mel'niichuk, and P. Klimczyk, J. Superhard Mater., 37, Iss. 4: 222 (2015). Crossref