Influence of Cr Dopants on the Oxidation Resistance of Multilayered TiAlN Films

O. I. Nakonechna, V. A. Makara

Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine

Received: 24.06.2019; final version - 28.10.2019. Download: PDF

In this paper, the influence of Cr dopants on the oxidation resistance of multilayered Ti$_{1-x}$Al$_x$N coatings deposited by magnetron sputtering is studied. Thermogravimetric experiments show that Cr dopants increase the oxidation performance of the coatings. The structure of the oxide scale formed on the surface of films at high temperature annealing has studied in detail by means of SEM. For TiAlN film, dual oxide layers occur when tested at 800°C, being the porous inner one of Ti–O and the outer a compact layer of Al–O, which protects the coating from the oxidation. At 900°C the oxidation resistance of this film is degraded due to the fast Ti ions diffusion to the surface, which destroys the formation of the protective Al–O layer. The Cr rich coatings show different oxides scales depending on their chemical composition. For coating with small Cr content, a Ti–O rich layer is formed on the top of a protective Al–Cr–O layer. Concerning the coating with the highest Cr content, a compact and continuous Cr(Al)$_2$O$_3$ oxide layer is formed at heat treatment with residual TiO$_2$ islands on the top, contributing for a significant enhancement of the oxidation resistance.

Key words: thin film, magnetron sputtering, scanning electron microscopy, thermogravimetry, oxidation resistance.

URL: http://mfint.imp.kiev.ua/en/abstract/v41/i12/1653.html

DOI: https://doi.org/10.15407/mfint.41.12.1653

PACS: 07.79.Cz, 61.46+w, 68.65.Ac, 81.15.Cd, 81.65.Mq

Citation: O. I. Nakonechna and V. A. Makara, Influence of Cr Dopants on the Oxidation Resistance of Multilayered TiAlN Films, Metallofiz. Noveishie Tekhnol., 41, No. 12: 1653—1666 (2019) (in Ukrainian)


REFERENCES
  1. Y. C. Chim, X. Z. Ding, X. T. Zeng, and S. Zhang, Thin Solid Films, 517: 4845 (2009). Crossref
  2. V. H. Derflinger, A. Schütze, and M. Ante, Surf. Coat. Technol., 200: 4693 (2006). Crossref
  3. D. Li, J. Chen, C. Zou, J. Ma, P. Li, and Y. Li, J. Alloys Compd., 609: 239 (2014). Crossref
  4. L. Chen, J. Paulitsch, Y. Du, and P. H. Mayrhofer, Surf. Coat. Technol., 206: 2954 (2012). Crossref
  5. B. Yang, L. Chen, K. K. Chang, W. Pan, Y. B. Peng, Y. Du, and Y. Liu, Int. J. Refract. Met. Hard Mater., 35: 235 (2012). Crossref
  6. Y. X. Xu, L. Chen, B. Yang, Y. B. Peng, Y. Du, J .C. Feng, and F. Pei, Surf. Coat. Technol., 235: 506 (2013). Crossref
  7. O. Nakonechna, Metallofiz. Noveishie Tekhnol., 41, No. 5: 621 (2019). Crossref
  8. Y. X. Xu, L. Chen, F. Pei, and Y. Du, Surf. Coat. Technol., 304: 512 (2016). Crossref
  9. S. Q. Wang, L. Chen, B. Yang, K. K. Chang, Y. Du, J. Li, and T. Gang, Int. J. Refract. Met. Hard Mater., 28: 593 (2010). Crossref
  10. L. Zhu, M. Hu, W. Ni, and Y. Liu, Vacuum, 86, Iss. 12: 1795 (2012). Crossref
  11. P. H. Mayrhofer, R. Rachbauer, and D. Holec, Scr. Mater., 63: 807 (2010). Crossref
  12. C. M. Koller, R. Hollerweger, C. Sabitzer, R. Rachbauer, S. Kolozsvári, J. Paulitsch, and P. H. Mayrhofer, Surf. Coat. Technol., 259, Part C: 599 (2014). Crossref
  13. R. Rachbauer, D. Holec, and P. H. Mayrhofer, Surf. Coat. Technol., 211: 98 (2012). Crossref
  14. M. Moser, D. Kiener, C. Scheu, and P.H. Mayrhofer, Materials, 3: 1573 (2010). Crossref
  15. L. Chen, D. Holec, Y. Du, and P. H. Mayrhofer, Thin Solid Films, 519: 5503 (2011). Crossref
  16. Y. X. Xu, L. Chen, F. Pei, Y. Du, Y. Liu, and J. L. Yue, Thin Solid Films, 565: 25 (2014). Crossref
  17. H. Lind, R. Forsen, B. Alling, N. Ghafoor, F. Tasnadi, M. P. Johansson, I. A. Abrikosov, and M. Oden, Appl. Phys. Lett., 99: 3 (2011). Crossref
  18. K. Yamamoto, T. Sato, K. Takahara, and K. Hanaguri, Surf. Coat. Technol., 174-175: 620 (2003). Crossref
  19. Y.-Y. Chang, D.-Y. Wang, and C.-Y. Hung, Surf. Coat. Technol., 200, Iss. 5–6: 1702 (2005). Crossref
  20. D. A. Delisle and J. E. Krzanowski, Thin Solid Films, 524: 100 (2012). Crossref
  21. P. Li, L. Chen, S. Q.Wang, B. Yang, Y. Du, J. Li, and M. J. Wu, Int. J. Refract. Met. Hard Mater., 40: 51 (2013). Crossref
  22. L. A. Donohue, I. J. Smith, W. D. Münz, I. Petrov, and J. E. Greene, Surf. Coat. Technol., 94: 226 (1997). Crossref
  23. L. A. Donohue, D. B. Lewis, W. D. Münz, M. M. Stack, S. B. Lyon, H. W. Wang, and D. Rafaja, Vacuum, 55: 109 (1999). Crossref
  24. I. Wadsworth, I. J. Smith, L. A. Donohue, W. D. Munz, Surf. Coat. Technol., 94: 315 (1997). Crossref
  25. M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, and C. Ziebert, J. Alloys Compd., 483: 321 (2009). Crossref
  26. F. Vaz, L. Rebouta, M. Andritschky, M. F. da Silva, and J. C. Soares, J. Eur. Ceram. Soc., 17: 1971 (1997). Crossref
  27. H. C. Barshilia, M. S. Prakash, A. Jain, and K. S. Rajam, Vacuum, 77: 169 (2005). Crossref
  28. Y.-Y. Chang and C.-Y. Hsiao, Surf. Coat. Technol., 204: 992 (2009). Crossref