Influence of Volume and Temperature Changes on Mechanical and Thermal Properties of PVC Filled with Nanodispersed Metals

B. B. Kolupaev$^{1}$, B. S. Kolupaev$^{2}$, V. V. Levchuk$^{2}$, Yu. R. Maksymtsev$^{2}$, V. A. Sidletskii$^{2}$, O. S. Holub$^{2}$

$^{1}$Academician Stepan Demianchuk International University of Economics and Humanities, 4 Academician S. Demianchuk Str., UA-33028 Rivne, Ukraine
$^{2}$Rivne State University of Humanities, 12 Stepan Bandera Str., UA-33000 Rivne, Ukraine

Received: 19.10.2018; final version - 02.12.2018. Download: PDF

Based on the consideration of polyvinyl chloride (PVC) as a combination of fluctuation structural elements with finite lifetime, the specificity of the composite behaviour in the temperature range 298 K $\leq T \leq$ ($T_{\textrm{c}}$ + 10) K is investigated. As shown, the maintenance of nanodispersed copper and nichrome, obtained by physically-chemical and/or electrical explosion of the conductor methods in the amount from 0 to 5.0% vol., in the PVC system leads to significant changes in density ($\rho$) and specific volume ($V$), which are important structural and thermodynamic characteristics of the material. The quantitative interrelation between $\rho$, $V$, $T$, mechanical (elastic modulus, coefficient of compressibility) and thermal (entropy, thermodestruction, heat capacity, anharmonicity factor) properties of a composite is established. Using the equation of the state of a PVC system, obtained on the basis of the potentials of the inter- and intramolecular interaction, the formation of the boundary layer and its influence on the defect structure of the material are analysed with taking into account the $\rho$ and $T$ changes.

Key words: nanodispersed filler, polyvinyl chloride, relaxation, destruction, fluctuations.



PACS: 62.23.Pq, 62.25.-g, 64.30.-t, 65.60.+a, 81.07.Pr, 82.35.Lr, 82.35.Np

Citation: B. B. Kolupaev, B. S. Kolupaev, V. V. Levchuk, Yu. R. Maksymtsev, V. A. Sidletskii, and O. S. Holub, Influence of Volume and Temperature Changes on Mechanical and Thermal Properties of PVC Filled with Nanodispersed Metals, Metallofiz. Noveishie Tekhnol., 42, No. 1: 87—104 (2020) (in Ukrainian)

  1. Ya. I. Frenkel', Kineticheskaya Teoriya Zhidkostey [Kinetic Theory of Liquids] (Moscow: Nauka: 1975) (in Russian).
  2. G. M. Bartenev and S. Ya. Frenkel', Fizika Polimerov [Physics of Polymers] (Leningrad: Khimiya: 1990) (in Russian).
  3. S. Ya. Frenkel', I. M. Tsygel'nyy, and B. S. Kolupaev, Molekulyarnaya Kibernetika [Molecular Cybernetics] (Lviv: Svit: 1990) (in Russian).
  4. A. L. Volynskiy and N. F. Bakeev, Strukturnaya Samoorganizatsiya Amorfnykh Polimerov [Structural Self-Organization of Amorphous Polymers] (Moscow: Fizmatlit: 2005) (in Russian).
  5. B. B. Kolupaev, B. S. Kolupaev, V. V. Levchuk, B. D. Nechyporuk, Yu. R. Maksimtsev, and V. A. Sidletskii, Mech. Compos. Mater., 54, No. 3: 333 (2018). Crossref
  6. B. S. Kolupaev, Relaksatsionnye i Termicheskie Svoystva Napolnennykh Polimernykh Sistem [Relaxation and Thermal Properties of Filled Polymer Systems] (Lviv: Vishcha Shkola: 1980) (in Russian).
  7. B. Wunderlich and H. Baur, Heat Capacities of Linear High Polymers (New York: Springer: 1970).
  8. Yu. L. Klimontovich, Statisticheskaya Fizika [Statistical Physics] (Moscow: Nauka: 1982) (in Russian).
  9. T. G. Lyashuk and B. B. Kolupaev, Surf. Eng. Appl. Elect., 48, No. 5: 487 (2012). Crossref
  10. N. I. Nikitenko, J. Eng. Phys. Thermophys., 38, No. 3: 250 (1980). Crossref
  11. A. R. Khokhlov, Polym. Sci. Ser. A, 51, No. 1: 26 (2009). Crossref
  12. B. B. Kolupaev, V. V. Klepko, E. V. Lebedev, and T. G. Lyashuk, Polym. Sci. Ser. A, 56, No. 3: 337 (2014). Crossref