Effect of Non-Equilibrium Conditions of Reactions Between Cu and Al in the Solid-State on Al$_4$Cu$_9$ Phase Formation in Cu–Al System

Ya. I. Matvienko$^{1}$, S. S. Polishchuk$^{1}$, A. D. Rud$^{1}$, T. M. Mika$^{1}$, A. I. Ustinov$^{2}$, S. A. Demchenkov$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 02.10.2019. Download: PDF

Features of reactions between Cu and Al in the solid state are studied by example of Cu–20% wt. Al system depending on the mixing conditions of the components: either mechanical alloying (MA) of elemental powders followed by their sintering; thermal diffusion interaction between layers in multilayered Cu/Al foils deposited by electron-beam physical vapour deposition (EBPVD). Phase transformations induced by the thermomechanical treatment of both the powders and multilayered foils (MFs) are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). As shown, the MA during 8 hours results in the formation of disordered $\beta$-phase (structural type A2) with a body centred cubic lattice (b.c.c.). Heating of the powders up to 500°C followed by their sintering at 850°C and 30 MPa leads to ordering of $\beta$-phase into $\gamma_2$-Al$_4$Cu$_9$ phase (type D8$_3$). In case of the MFs, heating at 150°C results in the formation of two-phase structure: $\beta$ + $\theta$-Al$_2$Cu. The formation of monoclinic $\eta_2$-AlCu phase and its growth are observed as temperature increases up to 200–400°C, while phase composition of the multilayered foils at 500–850°C corresponds to $\eta_2$-AlCu + $\gamma_2$-Al$_4$Cu$_9$. The difference of the phase transformations in systems prepared using mechanical alloying (MA) and MFs is caused by different transformation mechanisms: diffusion in powders and shear in MFs. The effect of change of the phase composition on mechanical properties of Cu–20% wt. Al composites are considered.

Key words: Cu–Al composites, mechanical alloying, sintering, electron-beam physical vapour deposition, Al$_4$Cu$_9$ phase.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i02/0143.html

DOI: https://doi.org/10.15407/mfint.42.02.0143

PACS: 61.05.cp, 62.25.-g, 64.60.Cn, 64.60.My, 64.70.kd, 64.70.Nd, 81.20Ev

Citation: Ya. I. Matvienko, S. S. Polishchuk, A. D. Rud, T. M. Mika, A. I. Ustinov, and S. A. Demchenkov, Effect of Non-Equilibrium Conditions of Reactions Between Cu and Al in the Solid-State on Al$_4$Cu$_9$ Phase Formation in Cu–Al System, Metallofiz. Noveishie Tekhnol., 42, No. 2: 143—157 (2020) (in Ukrainian)

  1. E. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases (Taylor and Francis Group LLC: 2011). Crossref
  2. R. Dasgupta, J. Mater. Res., 29: (2014). Crossref
  3. D. Turnbull, MTA, 12: 695 (1981). Crossref
  4. N. S. Larionova, R. M. Nikonova, A. L. Ul'yanov, M. I. Mokrushina, and V. I. Lad'yanov, Phys. Met. Metallogr., 120, No. 9: 858 (2019). Crossref
  5. C. Suryanarayana, Prog. Mater. Sci., 1: 46 (2001). Crossref
  6. M. A. Shaik and B. R. Golla, J. Mater. Sci. Metals, 53: 14694 (2018). Crossref
  7. A. G. Merzhanov, J. Mater. Chem., 14: 1779 (2004). Crossref
  8. B. E. Paton, A. Ya. Ishchenko, and A. I. Ustinov, The Paton Welding Journal, 12: 2 (2008).
  9. M. J. Morán, A. M. Condó, F. Soldera, M. Sirena, and N. Haberkorn, Mater. Lett., 184: 17 (2016). Crossref
  10. Yu. M. Koval' and V. A. Lobodyuk, Usp. Fiz. Met., 7, No. 2: 53 (2006) (in Russian). Crossref
  11. O. Zobac, A. Kroupa, A. Zemanova, and K. Richter, Metall. Materials Trans. A, 50A: 3805 (2019). Crossref
  12. N. Ponweiser, Ch. L. Lengauer, and K. W. Richter, Intermetallics, 19: 1737 (2011). Crossref
  13. X. J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, J. Alloys Compd., 264, Iss. 1-2: 201 (1998). Crossref
  14. J. C. de Lima, D. M. Triches, V. H. F. dos Santos, and T. A. Grandi, J. Alloys Compd., 282: 258 (1999). Crossref
  15. I. Manna, P. P. Chattopadhyay, B. Chatterjee, and S. K. Pabi, J. Mater. Sci., 36: 1419 (2001). Crossref
  16. F. Li, K. N. Ishihara, and P. H. Singu, Metall. Trans. A, 22: 2849 (1991). Crossref
  17. D. Y. Ying and D. L. Zhang, J. Alloy Compd., 311: 275 (2000). Crossref
  18. R. Besson, J. Kwon, L. Thuinet, M.-N. Avettand-Fènoël, and A. Legris, Phys. Rev. B, 90: 214104 (2014). Crossref
  19. J. Kwon, L. Thuinet, M.-N. Avettand-Fènoël, A. Legris, and R. Besson, Intermetallics, 46: 250 (2014). Crossref
  20. F. Haidara, M.-Ch. Record, B. Duployer, and D. Mangelinck, Surf. Coat. Technol., 206: 3851 (2012). Crossref
  21. W. Wang and K. Lu, Acta Metall Sin., 39(1): 1 (2003).
  22. A. Ustinov, Ya. Matvienko, S. Polishchuk, and A. Shishkin, The Paton Welding Journal, 10: 23 (2009).
  23. L. A. Olikhovskaya, T. V. Melnichenko, Ya. I. Matvienko, and A. I. Ustinov, Sovremennaya Elektrometallurgiya, 2: 27 (2009) (in Russian).
  24. P. Yu. Butyagin and A. N. Streletskii, Phys. Solid State, 47: 856 (2005). Crossref
  25. G. K. Williamson and W. H. Hall, Acta Metal., 1: 22 (1953). Crossref
  26. R. Hielscher and H. Schaeben, J. Appl. Cryst., 41: 1024 (2008). Crossref
  27. S. R. Ignatovich, I. M. Zakiev, and D. I. Borisov, Strength of Materials, 38, Iss. 4: 428 (2006). Crossref
  28. P. R. Swann and H. Warlimont, Acta Metall., 11: 511 (1963). Crossref
  29. Ya. I. Matvienko, A. Rud, S. Polishchuk, Yu. Zagorodniy, N. Rud, and V. Trachevski, Appl. Nanosci., (2019). Crossref
  30. Ya. I. Matvienko, A. D. Rud, S. S. Polishchuk, N. D. Rud, S. O. Demchenkov, and A. Yu. Klepko, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1519 (2019) (in Russian). Crossref
  31. Ya. I. Matvienko, S. S. Polishchuk, A. D. Rud, T. M. Mika, V. I. Bondarchuk, and S. A. Demchenkov, Metallofiz. Noveishie Tekhnol., 41, No. 8: 981 (2019) (in Ukrainian). Crossref
  32. R. K. Ray and J. J. Jonas, International Materials Reviews, 35, Iss. 1: 1 (1990). Crossref
  33. G. Stone and G. Thomas, Metall. Trans., 5: 2095 (1974). Crossref
  34. A. I. Ustinov and S. A. Demchenkov, Intermetallics, 84: 82 (2017). Crossref
  35. G. Gubbels, M. Kouters, O. O'Halloran, and R. Rongen, 3rd Electronics System Integration Technology Conference ESTC (September 13-16, 2010, Berlin). Crossref
  36. A. M. Glezer and I. E. Permyakova, Nanokristally, Zakalyonnye iz Rasplava (Moscow: Fizmatlit: 2012) (in Russian).