Nanosize Regions of Homogeneous Magnetic Ordering in Atomically Disordered Binary Substitutional B.C.C. Alloys with Strong Electron Correlations

E. G. Len$^{1,2}$, V. V. Lizunov$^{1}$, T. D. Shatnii$^{1}$, M. V. Ushakov$^{1}$, T. S. Len$^{3}$, E. A. Tsapko$^{1}$, A. O. Bilots’ka$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$National Aviation University, 1 Cosmonaut Komarov Ave., UA-03058 Kyiv, Ukraine

Received: 28.02.2020. Download: PDF

In this work, a theoretical model is proposed to describe the tendencies for the formation of local regions of homogeneous magnetic ordering in binary substitutional alloys with strong electron correlations, in which the type and size of such regions are determined mainly by changes in the electronic structure. Such systems include, in particular, transition metals alloys. Numerical calculations are performed in the generalized Hubbard model to determine the magnetic homogeneity regions at 0 K in fully atomically disordered b.c.c. alloys. As shown, even with constant values of electron concentration and Coulomb repulsion potential of electrons at one site, the changes of both type and sizes (in wide range) of homogeneous magnetization regions are possible due to only changes in the concentration of alloy components. Moreover, at certain concentrations of the alloy components, restrictions on the permissible types of magnetic ordering are possible in comparison with one-component systems. The behaviour of multicomponent magnetic crystals is significantly more complex. For their description, one should take into account the main aspects of the mutual influence of the atomic and magnetic subsystems by adjusting the electronic structure. This not only puts additional requirements to the relevant theoretical approaches, but also opens prospects to improve and develop some traditional and novel methods of magnetic systems diagnosis, in particular neutron and positron spectroscopies.

Key words: magnetic alloys, strong electronic correlations, electronic structure, magnetic phase diagram, parameters of magnetic order, region of homogeneous magnetic order.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i03/0289.html

DOI: https://doi.org/10.15407/mfint.42.03.0289

PACS: 71.10.Fd, 71.20.Be, 71.27.+a, 71.28.+d, 71.55.Jv, 75.10.Lp

Citation: E. G. Len, V. V. Lizunov, T. D. Shatnii, M. V. Ushakov, T. S. Len, E. A. Tsapko, and A. O. Bilots’ka, Nanosize Regions of Homogeneous Magnetic Ordering in Atomically Disordered Binary Substitutional B.C.C. Alloys with Strong Electron Correlations, Metallofiz. Noveishie Tekhnol., 42, No. 3: 289—306 (2020) (in Ukrainian)


REFERENCES
  1. I. Manke, N. Kardjilov, R. Schäfer, A. Hilger, M. Strobl, M. Dawson, C. Grünzweig, G. Behr, M. Hentschel, C. David, A. Kupsch, A. Lange, and J. Banhart, Nat. Commun., 1: 125 (2010). Crossref
  2. M. M. Farhtdinov, Fizika Magnitnykh Domenov v Antiferromagnetikakh i Ferritah [Physics of Magnetic Domains in Antiferromagnets and Ferrites] (Moscow: Nauka: 1981) (in Russian).
  3. A. Hubert and R. Schäfer, Magnetic Domains. The Analysis of Magnetic Microstructures (Springer: 2009). Crossref
  4. M. A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals (Berlin: Springer: 1996). Crossref
  5. P. Hautojarvi, Topics in Current Physics. Positrons in Solids (Berlin Heidelberg New York: Springer-Verlag: 1979). Crossref
  6. Yu. A. Izyumov, Phys. Usp., 38: 385 (1995). Crossref
  7. Yu. A. Izyumov and E. Z. Kurmaev, Phys. Usp., 51: 23 (2008). Crossref
  8. R. Z. Levitin and A. S. Markosjan, Uspekhi Fizicheskikh Nauk, 155: 623 (1988) (in Russian). Crossref
  9. V. S. Mihalenkov, V. I. Tokar', and E. A. Tsapko, Ukrayins'kyy Fizychnyy Zhurnal, 24, No. 10: 1552 (1979) (in Russian).
  10. C. Tikadzumi, Fizika Ferromagnetizma. Magnitnye Kharakteristiki i Prakticheskie Primeneniya [Physics of Ferromagnetism. Magnetic Characteristics and Practical Applications] (Moscow: Mir: 1987) (in Russian).
  11. V. V. Lizunov, E. G. Len, I. M. Melnyk, M. V. Ushakov, T. S. Len, and V. A. Tatarenko, Metallofiz. Noveishie Tekhnol., 36: 575 (2014) (in Russian). Crossref
  12. V. V. Lizunov, E. G. Len, M. V. Ushakov, T. S. Len, and V. A. Tatarenko, Metallofiz. Noveishie Tekhnol., 37: 1405 (2015) (in Russian). Crossref
  13. S. P. Repetsky and T. D. Shatnii, Theoretical and Mathematical Physics, 131: 832 (2002) (in Russian). Crossref
  14. T. M. Radchenko and V. A. Tatarenko, Usp. Fiz. Met., 9, No. 1: 1 (2008) (in Ukrainian). Crossref
  15. I. V. Vernyhora, S. M. Bokoch, and V. A. Tatarenko, Usp. Fiz. Met., 11, No. 3: 313 (2010) (in Ukrainian). Crossref
  16. S. M. Bokoch and V. A. Tatarenko, Usp. Fiz. Met., 11, No. 4: 413 (2010). Crossref