Effect of Twin Microstructure on the Magnetization Behaviour of NiMnGa Ferromagnetic Shape Memory Alloys

O. A. Likhachov, Yu. M. Koval

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 17.11.2019. Download: PDF

The model calculations of the magnetization curves for the internally twinned NiMnGa ferromagnetic shape memory alloy (FMSMA) are performed at the different volume fractions of twin variants. The method is based on the direct minimization of FMSMA’s free energy in new micromagnetic model taking into account both the magnetic anisotropy energy and the magnetostatic energy contributions associated with the laminated twin microstructure. The effect of the magnetostatic energy is discussed in comparison with some early models, where the magnetostatic energy was completely ignored.

Key words: martensitic transformations, shape-memory effect, twinning, magnetic anisotropy, domain walls, domain structure, magnetization curve.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i03/0307.html

DOI: https://doi.org/10.15407/mfint.42.03.0307

PACS: 61.72.Mm, 62.20.fg, 75.30.Gw, 75.60.Ch, 75.60.Ej, 81.30.Kf

Citation: O. A. Likhachov and Yu. M. Koval, Effect of Twin Microstructure on the Magnetization Behaviour of NiMnGa Ferromagnetic Shape Memory Alloys, Metallofiz. Noveishie Tekhnol., 42, No. 3: 307—315 (2020)


REFERENCES
  1. K. Ullakko, J. Mater. Eng. Perform., 5: 405 (1996). Crossref
  2. S. J. Murray, M. Marioni, S. M. Allen, and R. C. O'Handley, Appl. Phys. Lett., 77: 886 (2000). Crossref
  3. A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullakko, Appl. Phys. Lett., 80: 1746 (2002). Crossref
  4. K. Ullakko, J. K. Huang, C. Kantner, R. C. O'Handley, and V. V. Kokorin, Appl. Phys. Lett., 69: 1966 (1996). Crossref
  5. K. Ullakko, J. K. Huang, V. V. Kokorin, and R. C. O'Handley, Scr. Mater., 36: 1133 (1997). Crossref
  6. R. C. O'Handley, J. Appl. Phys., 83: 3263 (1998). Crossref
  7. R. D. James, R. Tickle, and M. Wuttig, Mater. Sci. Eng. A, 273-275: 320 (1999). Crossref
  8. A. A. Likhachev and K. Ullakko, Eur. Phys. J. B, 2: 1 (1999). Crossref
  9. A. A. Likhachev and K. Ullakko, Phys. Lett. A, 275: 142 (2000). Crossref
  10. A. A. Likhachev and K. Ullakko, J. Phys. IV France, 11, No. PR8: Pr8-293 (2001). Crossref
  11. A. A. Likhachev, A. Sozinov, and K. Ullakko, Proc. SPIE, 5387: 128 (2004).
  12. A. A. Likhachev, A. Sozinov, and K. Ullakko, Mater. Sci. Eng. A, 378: 513 (2004). Crossref
  13. A. A. Likhachev, Mater. Sci. Forum, 738-739: 405 (2013). Crossref
  14. A. A. Likhachev, Chem. Met. Alloys, 6: 183 (2014). Crossref
  15. A. A. Likhachev, A. Sozinov, and K. Ullakko, Mech. Mater., 38: 551 (2006). Crossref
  16. A. A. Likhachev, Mater. Sci. Forum, 738-739: 405 (2013). Crossref
  17. O. Heczko, J. Magn. Magn. Mater., 290-291: 787 (2005). Crossref
  18. L. Straka and O. Heczko, J. Magn. Magn. Mater., 290-291: 829 (2005). Crossref
  19. U. Gaitzsch, H. Klauß, S. Roth, and L. Schultz, J. Magn. Magn. Mater., 324: 430 (2012). Crossref
  20. Z. Li, Y. Zhang, C. Esling, X. Zhao, and L. Zuo, Acta Mater., 59: 3390 (2011). Crossref
  21. O. Heczko, J. Kopeček, L. Straka, and H. Seiner, Mater. Res. Bull., 48: 5105 (2013). Crossref