Structuring of Micro-Layered Nickel Coatings Obtained by Program-Controlled Current

V. V. Tytarenko, V. A. Zabludovsky, E. Ph. Shtapenko, I. V. Tytarenko, S. A. Grishechkin

Dnipro National University of Railway Transport named after Academician V. Lazaryan, 2 Academician Lazaryan Str., UA-49010 Dnipro, Ukraine

Received: 26.10.2019. Download: PDF

An analysis of the results of studying of the deposition regimes influence on the cathode current efficiency, texture, fine structure, cross-sectional growth structure and microhardness of nickel coatings made it possible to establish program-controlled current modes (density of variable steps of electric current, as well as their duration), at which formation is observed a micro-layered structure of nickel coatings. As shown, the cycling of DC steps with a density from the maximum allowable quality of the deposited coating to the maximum on diffusion allows increasing the current efficiency of the metal, obtaining coatings with reduced internal tensions and pronounced axial texture, increasing a microhardness and a deposition rate of nickel coatings. The kinetics of nucleation and growth of nickel coatings obtained by program-controlled current is studied.

Key words: program-controlled current, micro-layered growth structure, fine structure, current efficiency, nucleation rate, growth rate of nickel coatings.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i03/0351.html

DOI: https://doi.org/10.15407/mfint.42.03.0351

PACS: 62.20.Qp, 68.35.Dv, 68.35.Fx, 68.35.Rh, 68.55.A-, 68.55.J-, 68.55.Nq, 81.15.Pq

Citation: V. V. Tytarenko, V. A. Zabludovsky, E. Ph. Shtapenko, I. V. Tytarenko, and S. A. Grishechkin, Structuring of Micro-Layered Nickel Coatings Obtained by Program-Controlled Current, Metallofiz. Noveishie Tekhnol., 42, No. 3: 351—362 (2020) (in Russian)


REFERENCES
  1. V. V. Povetkin and I. M. Kovenskiy, Struktura Elektroliticheskikh Pokrytij (Moscow: Metallurgiya: 1989) (in Russian).
  2. Yu. M. Polukarov and Z. V. Semenova, Elektrokhimiya, 4: 568 (1968) (in Russian).
  3. Yu. M. Polukarov and Z. V. Semenova, Elektrokhimicheskie Protsessy pri Elektroosazhdenii i Anodnom Rastvorenii Metallov (Moscow: Nauka: 1969) (in Russian).
  4. N. A. Kostin, V. S. Kublanovskiy, and V. A. Zabludovskiy, Impulsnyj Elektroliz (Kyiv: Naukova Dumka: 1989) (in Russian).
  5. V V. A. Zabludovsky and E. F. Shtapenko, Transaction of the Institute of Metal Finishing, 75, No. 5: 203 (1997). Crossref
  6. E. F. Shtapenko, V. A. Zabludovskiy, V. V. Titarenko, V. S. Kraeva, and A. M. Afanasov, Metallofiz. Noveishie Tekhnol., 41, No. 1: 27 (2019) (in Russian). Crossref
  7. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, Rentgenograficheskij i Elektronno-Opticheskij Analiz (Moscow: MISiS: 1994) (in Russian).
  8. V. A. Zabludovskiy, E. F. Shtapenko, and V. V. Titarenko, Programmnyj Impulsnyj Elektroliz Metallov i Kompozitsionnykh Materialov (Saarbrücken: Lambert Academic Publishing: 2019) (in Russian).
  9. V. A. Zabludovskiy, Elektrokhimiya, 21, № 7: 874 (1985) (in Russian).
  10. V. A. Zabludovskiy, V. S. Abdulin, and N. A. Kostin, Navodorozhivanie Metallov i Borba s Vodorodnoj Khrupkostyu (Moscow: MDNTP: 1979) (in Russian).
  11. V. V. Tytarenko, V. A. Zabludovsky, and E. Ph. Shtapenko, Inorganic Materials: Applied Research, 10, No. 3: 589 (2019). Crossref
  12. V. A. Zabludovskiy and V. V. Dudkina, Metallofiz. Noveishie Tekhnol., 32, No. 6: 757 (2010) (in Russian).