Modification of Surface Layers of Cu–39Zn–1Pb Brass at High-Frequency Impact Deformation in the Air and Argon Inert Environments

M. A. Vasylyev$^{1}$, B. N. Mordyuk$^{1}$, S. M. Voloshko$^{2}$, V. I. Zakiev$^{3}$, A. P. Burmak$^{2}$, D. V. Pefti$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{3}$National Aviation University, 1 Cosmonaut Komarov Ave., UA-03058 Kyiv, Ukraine

Received: 02.10.2019. Download: PDF

The changes of the surface microrelief and microhardness $HV$ of the surface layers of the two-phase Cu–39Zn–1Pb brass are experimentally studied after high-frequency impact treatment induced by ultrasound (ultrasonic impact treatment—UIT) in the air and inert (argon gas) environments. As shown, the argon-UIT leads to the substantial decrease in the roughness parameters of the modified surface. Conversely, the air-UIT results in the formation of more developed surface microrelief. An increase in the surface $HV$ of the Cu–39Zn–1Pb brass samples after UIT in argon and in air reaches $\cong$180% ($HV_{100}$ = 2.24 GPa) and $\cong$220% ($HV_{100}$ = 2.76 GPa), respectively. In both cases the strengthening is registered on a depth up to $\cong$1 mm. Instrumental indentation measurements of the samples after UIT in the air and argon show the increased hardness ($H_{IT}$ = 3.236 GPa and $H_{IT}$ = 2.469 GPa) well correlating to the $HV$ data, the decreased plasticity characteristic $\delta_{A}$ and Young modulus $E$ decreased from initials states (107 GPa) to 94 GPa and 91 GPa, respectively. Taking into account the SEM data and X-ray structural and phase analysis, the main factors affecting the strain hardening extents of the Cu–39Zn–1Pb brass surface layers in different environments are determined: growth of $\alpha$-phase amount, reorientation of $\alpha$-phase grains, and compressive residual stresses.

Key words: brass, ultrasonic impact treatment, inert environment, instrumental indentation, microhardness, surface roughness, residual stress.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i03/0381.html

DOI: https://doi.org/10.15407/mfint.42.03.0381

PACS: 43.35.+d, 62.20.Qp, 81.40.Ef, 81.40.Lm, 81.65.-b, 83.10.Tv, 83.50.Uv

Citation: M. A. Vasylyev, B. N. Mordyuk, S. M. Voloshko, V. I. Zakiev, A. P. Burmak, and D. V. Pefti, Modification of Surface Layers of Cu–39Zn–1Pb Brass at High-Frequency Impact Deformation in the Air and Argon Inert Environments, Metallofiz. Noveishie Tekhnol., 42, No. 3: 381—400 (2020) (in Ukrainian)


REFERENCES
  1. A. M. Sulima and M.I. Yevstigneev, Kachestvo Poverkhnostnogo Sloya i Ustalostnaya Prochnost Detalei iz Zharoprochnykh i Titanovykh Splavov [Quality of Surface Layer and Fatigue Durability of Details Made from Heatproof and Titanium Alloys] (Moscow: Machinostroenie: 1974) (in Russian).
  2. P. E. Markovs'kyi, V. K. Pishchak, B. M. Mordyuk, and P. N. Okrainets', Mater. Sci., 42, Iss. 3: 376 (2006). Crossref
  3. D. A. Lesyk, H. Soyama, B. N. Mordyuk, V. V. Dzhemelinskyi, S. Martinez, N. I. Khripta, and A. Lamikiz, J. Mater. Eng. Perform., 28, Iss. 9: 5307 (2019). Crossref
  4. H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, and K. Lu, Acta Mater., 51, Iss. 7: 1871 (2003). Crossref
  5. C. Ma, Y. Dong, and C. Ye, Procedia CIRP, 45: 319 (2016). Crossref
  6. B. N. Mordyuk and G. I. Prokopenko, Ultrasonic Impact Treatment - An Effective Method for Nanostructuring the Surface Layers of Metallic Materials, In: Handbook of Mechanical Nanostructuring (Ed. Mahmood Aliofkhazraei) (Wiley-VCH: 2015), ch. 17. Crossref
  7. B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, and M. O. Iefimov, Mater. Sci. Eng., A, 458, Iss. 1-2: 253 (2007). Crossref
  8. M. O. Vasylyev, B. M. Mordyuk, G. I. Prokopenko, S. M. Voloshko, L. F. Yatsenko, and N. I. Khripta, Metallofiz. Noveishie Tekhnol., 40, No. 8: 1029 (2018) (in Ukrainian). Crossref
  9. B. N. Mordyuk, G. I. Prokopenko, P. Yu. Volosevych, L. E. Matokhnyuk, A. V. Byalonovich, and T. V. Popova, Mater. Sci. Eng., A, 659: 119 (2016). Crossref
  10. K. Lu, Science, 345, Iss. 6203: 1455 (2014). Crossref
  11. K. Lu, L. Lu, and S. Suresh, Science, 324, Iss. 5925: 349 (2009). Crossref
  12. Y. H. Zhao, X. Z. Liao, Z. Horita, T. G. Langdon, and Y. T. Zhu, Mater. Sci. Eng., A, 493, Iss. 1-2: 123 (2008). Crossref
  13. G. H. Xiao, N. R. Tao, and K. Lu, Mater. Sci. Eng., A, 513-514: 13 (2009). Crossref
  14. A. M. Hodge, Y. M. Wang, and T. W. Barbee Jr., Mater. Sci. Eng., A, 429, Iss. 1-2: 272 (2008). Crossref
  15. M. O. Vasiliev, S. M. Voloshko, and L. F. Yatsenko, Uspehi Fiz. Met., 13, No. 3: 303 (2012) (in Russian). Crossref
  16. Y. S. Li, Y. Zhang, N. R. Tao, and K. Lu, Acta Mater., 57, Iss. 3: 761 (2009). Crossref
  17. M. O.Vasylyev, B. M. Mordyuk, S. M. Voloshko, V. I. Zakiyev, A. P. Burmak, and D. V. Pefti, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1499 (2019) (in Ukrainian). Crossref
  18. M. O.Vasylyev, B. M. Mordyuk, S. M. Voloshko, A. P. Burmak, and D. V. Pefti, Metallofiz. Noveishie Tekhnol., 41, No. 12: 1611 (2019) (in Ukrainian). Crossref
  19. C. Zener and J. H. Hollomon, J. Appl. Phys., 15, Iss. 1: 22 (1944). Crossref
  20. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Surf. Coat. Technol., 343: 57 (2018). Crossref
  21. G. H. Xiao, N. R. Tao, and K. Lu, Scripta Mater., 59, Iss. 9: 975 (2008). Crossref
  22. A. M. Glezer and L. S. Metlov, Phys. Solid State, 52, No. 6: 1162 (2010). Crossref
  23. M. O. Vasylyev, B. M. Mordyuk, S. I. Sydorenko, S. M. Voloshko, A. P. Burmak, and N. V. Franchik, Metallofiz. Noveishie Tekhnol., 39, No. 7: 905 (2017) (in Ukrainian). Crossref
  24. K. Neishi, Z. Horita, and T. G. Langdon, Scripta Mater., 45, Iss. 8: 965 (2001). Crossref
  25. A. Moshkovich,V. Perfilyev, I. Lapsker, and L. Rapoport, Wear, 320: 34 (2014). Crossref
  26. J. Belzunce and M. Suêry, Scripta Metall., 15, Iss. 8: 895 (1981). Crossref
  27. Y. N. Petrov, M. A. Vasylyev, L. N. Trofimova, I. N. Makeeva, and V. S. Filatova, Appl. Surf. Sci., 327: 1 (2015). Crossref
  28. M. O. Vasylyev, B. M. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Metallofiz. Noveishie Tekhnol., 39, No. 1: 49 (2017) (in Ukrainian). Crossref
  29. L. S. Fomenko, A. V. Rusakova, S. V. Lubenets, and V. A. Moskalenko, Low Temp. Phys., 36, Iss. 7: 645 (2010). Crossref
  30. Yu. V. Milman, S. I. Chugunova, I. V. Goncharova, Problems Atomic Sci. Technol., 98, No. 4: 182 (2011) (in Russian).
  31. Yu. V. Milman, S. I. Chugunova, I. V. Goncharova, and A. A. Golubenko, Usp. Fiz. Met., 19, No. 3: 271 (2018). Crossref
  32. I. Zakiev and E. Aznakayev, J. Lab. Autom., 7, Iss. 5: 44 (2002). Crossref
  33. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, A. P. Burmak, I. O. Kruhlov, and V. I. Zakiev, Surf. Coat. Technol., 361: 413 (2019). Crossref
  34. S. A. Firstov, S. R. Ignatovich, and I. M. Zakiev, Strength Mater., 41, No. 2: 147 (2009). Crossref
  35. V. Zakiev, A. Markovsky, E. Aznakaev, I. Zakiev, and E. Gursky, Medical Imaging, 5959: 595916-1 (2005).
  36. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 103: 761 (2016). Crossref
  37. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Surf. Eng., 34, Iss. 4: 324 (2018). Crossref
  38. M. O. Vasiliev, S. M. Voloshko and L. F. Yatsenko, Usp. Fiz. Met., 15, No. 2: 79 (2014) (in Russian). Crossref
  39. A. I. Yurkova, A. V. Belotsky, A. V. Byakova, and Yu. V. Milman, Nanosistemi, Nanomateriali, Nanotehnologii, 5, Iss. 2: 555 (2007) (in Russian).
  40. I. P. Kudryavtsev, Tekstury v Metallakh [Textures in Metals] (Mocsow: Metallurgy: 1965) (in Russian).