Loading [MathJax]/jax/output/HTML-CSS/jax.js

Modification of Surface Layers of Cu–39Zn–1Pb Brass at High-Frequency Impact Deformation in the Air and Argon Inert Environments

M. A. Vasylyev1, B. N. Mordyuk1, S. M. Voloshko2, V. I. Zakiev3, A. P. Burmak2, D. V. Pefti2

1G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
2National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
3National Aviation University, 1 Cosmonaut Komarov Ave., UA-03058 Kyiv, Ukraine

Received: 02.10.2019. Download: PDF

The changes of the surface microrelief and microhardness HV of the surface layers of the two-phase Cu–39Zn–1Pb brass are experimentally studied after high-frequency impact treatment induced by ultrasound (ultrasonic impact treatment—UIT) in the air and inert (argon gas) environments. As shown, the argon-UIT leads to the substantial decrease in the roughness parameters of the modified surface. Conversely, the air-UIT results in the formation of more developed surface microrelief. An increase in the surface HV of the Cu–39Zn–1Pb brass samples after UIT in argon and in air reaches 180% (HV100 = 2.24 GPa) and 220% (HV100 = 2.76 GPa), respectively. In both cases the strengthening is registered on a depth up to 1 mm. Instrumental indentation measurements of the samples after UIT in the air and argon show the increased hardness (HIT = 3.236 GPa and HIT = 2.469 GPa) well correlating to the HV data, the decreased plasticity characteristic δA and Young modulus E decreased from initials states (107 GPa) to 94 GPa and 91 GPa, respectively. Taking into account the SEM data and X-ray structural and phase analysis, the main factors affecting the strain hardening extents of the Cu–39Zn–1Pb brass surface layers in different environments are determined: growth of α-phase amount, reorientation of α-phase grains, and compressive residual stresses.

Key words: brass, ultrasonic impact treatment, inert environment, instrumental indentation, microhardness, surface roughness, residual stress.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i03/0381.html

DOI: https://doi.org/10.15407/mfint.42.03.0381

PACS: 43.35.+d, 62.20.Qp, 81.40.Ef, 81.40.Lm, 81.65.-b, 83.10.Tv, 83.50.Uv

Citation: M. A. Vasylyev, B. N. Mordyuk, S. M. Voloshko, V. I. Zakiev, A. P. Burmak, and D. V. Pefti, Modification of Surface Layers of Cu–39Zn–1Pb Brass at High-Frequency Impact Deformation in the Air and Argon Inert Environments, Metallofiz. Noveishie Tekhnol., 42, No. 3: 381—400 (2020) (in Ukrainian)


REFERENCES
  1. A. M. Sulima and M.I. Yevstigneev, Kachestvo Poverkhnostnogo Sloya i Ustalostnaya Prochnost Detalei iz Zharoprochnykh i Titanovykh Splavov [Quality of Surface Layer and Fatigue Durability of Details Made from Heatproof and Titanium Alloys] (Moscow: Machinostroenie: 1974) (in Russian).
  2. P. E. Markovs'kyi, V. K. Pishchak, B. M. Mordyuk, and P. N. Okrainets', Mater. Sci., 42, Iss. 3: 376 (2006). Crossref
  3. D. A. Lesyk, H. Soyama, B. N. Mordyuk, V. V. Dzhemelinskyi, S. Martinez, N. I. Khripta, and A. Lamikiz, J. Mater. Eng. Perform., 28, Iss. 9: 5307 (2019). Crossref
  4. H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, and K. Lu, Acta Mater., 51, Iss. 7: 1871 (2003). Crossref
  5. C. Ma, Y. Dong, and C. Ye, Procedia CIRP, 45: 319 (2016). Crossref
  6. B. N. Mordyuk and G. I. Prokopenko, Ultrasonic Impact Treatment - An Effective Method for Nanostructuring the Surface Layers of Metallic Materials, In: Handbook of Mechanical Nanostructuring (Ed. Mahmood Aliofkhazraei) (Wiley-VCH: 2015), ch. 17. Crossref
  7. B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, and M. O. Iefimov, Mater. Sci. Eng., A, 458, Iss. 1-2: 253 (2007). Crossref
  8. M. O. Vasylyev, B. M. Mordyuk, G. I. Prokopenko, S. M. Voloshko, L. F. Yatsenko, and N. I. Khripta, Metallofiz. Noveishie Tekhnol., 40, No. 8: 1029 (2018) (in Ukrainian). Crossref
  9. B. N. Mordyuk, G. I. Prokopenko, P. Yu. Volosevych, L. E. Matokhnyuk, A. V. Byalonovich, and T. V. Popova, Mater. Sci. Eng., A, 659: 119 (2016). Crossref
  10. K. Lu, Science, 345, Iss. 6203: 1455 (2014). Crossref
  11. K. Lu, L. Lu, and S. Suresh, Science, 324, Iss. 5925: 349 (2009). Crossref
  12. Y. H. Zhao, X. Z. Liao, Z. Horita, T. G. Langdon, and Y. T. Zhu, Mater. Sci. Eng., A, 493, Iss. 1-2: 123 (2008). Crossref
  13. G. H. Xiao, N. R. Tao, and K. Lu, Mater. Sci. Eng., A, 513-514: 13 (2009). Crossref
  14. A. M. Hodge, Y. M. Wang, and T. W. Barbee Jr., Mater. Sci. Eng., A, 429, Iss. 1-2: 272 (2008). Crossref
  15. M. O. Vasiliev, S. M. Voloshko, and L. F. Yatsenko, Uspehi Fiz. Met., 13, No. 3: 303 (2012) (in Russian). Crossref
  16. Y. S. Li, Y. Zhang, N. R. Tao, and K. Lu, Acta Mater., 57, Iss. 3: 761 (2009). Crossref
  17. M. O.Vasylyev, B. M. Mordyuk, S. M. Voloshko, V. I. Zakiyev, A. P. Burmak, and D. V. Pefti, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1499 (2019) (in Ukrainian). Crossref
  18. M. O.Vasylyev, B. M. Mordyuk, S. M. Voloshko, A. P. Burmak, and D. V. Pefti, Metallofiz. Noveishie Tekhnol., 41, No. 12: 1611 (2019) (in Ukrainian). Crossref
  19. C. Zener and J. H. Hollomon, J. Appl. Phys., 15, Iss. 1: 22 (1944). Crossref
  20. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Surf. Coat. Technol., 343: 57 (2018). Crossref
  21. G. H. Xiao, N. R. Tao, and K. Lu, Scripta Mater., 59, Iss. 9: 975 (2008). Crossref
  22. A. M. Glezer and L. S. Metlov, Phys. Solid State, 52, No. 6: 1162 (2010). Crossref
  23. M. O. Vasylyev, B. M. Mordyuk, S. I. Sydorenko, S. M. Voloshko, A. P. Burmak, and N. V. Franchik, Metallofiz. Noveishie Tekhnol., 39, No. 7: 905 (2017) (in Ukrainian). Crossref
  24. K. Neishi, Z. Horita, and T. G. Langdon, Scripta Mater., 45, Iss. 8: 965 (2001). Crossref
  25. A. Moshkovich,V. Perfilyev, I. Lapsker, and L. Rapoport, Wear, 320: 34 (2014). Crossref
  26. J. Belzunce and M. Suêry, Scripta Metall., 15, Iss. 8: 895 (1981). Crossref
  27. Y. N. Petrov, M. A. Vasylyev, L. N. Trofimova, I. N. Makeeva, and V. S. Filatova, Appl. Surf. Sci., 327: 1 (2015). Crossref
  28. M. O. Vasylyev, B. M. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Metallofiz. Noveishie Tekhnol., 39, No. 1: 49 (2017) (in Ukrainian). Crossref
  29. L. S. Fomenko, A. V. Rusakova, S. V. Lubenets, and V. A. Moskalenko, Low Temp. Phys., 36, Iss. 7: 645 (2010). Crossref
  30. Yu. V. Milman, S. I. Chugunova, I. V. Goncharova, Problems Atomic Sci. Technol., 98, No. 4: 182 (2011) (in Russian).
  31. Yu. V. Milman, S. I. Chugunova, I. V. Goncharova, and A. A. Golubenko, Usp. Fiz. Met., 19, No. 3: 271 (2018). Crossref
  32. I. Zakiev and E. Aznakayev, J. Lab. Autom., 7, Iss. 5: 44 (2002). Crossref
  33. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, A. P. Burmak, I. O. Kruhlov, and V. I. Zakiev, Surf. Coat. Technol., 361: 413 (2019). Crossref
  34. S. A. Firstov, S. R. Ignatovich, and I. M. Zakiev, Strength Mater., 41, No. 2: 147 (2009). Crossref
  35. V. Zakiev, A. Markovsky, E. Aznakaev, I. Zakiev, and E. Gursky, Medical Imaging, 5959: 595916-1 (2005).
  36. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 103: 761 (2016). Crossref
  37. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Surf. Eng., 34, Iss. 4: 324 (2018). Crossref
  38. M. O. Vasiliev, S. M. Voloshko and L. F. Yatsenko, Usp. Fiz. Met., 15, No. 2: 79 (2014) (in Russian). Crossref
  39. A. I. Yurkova, A. V. Belotsky, A. V. Byakova, and Yu. V. Milman, Nanosistemi, Nanomateriali, Nanotehnologii, 5, Iss. 2: 555 (2007) (in Russian).
  40. I. P. Kudryavtsev, Tekstury v Metallakh [Textures in Metals] (Mocsow: Metallurgy: 1965) (in Russian).