Development of Thermal Spray Technology of Forming a Crushed Polygonization Nanosized Substructure

O. M. Dubovyy, A. A. Karpechenko, M. M. Bobrov, A. V. Labartkava

Admiral Makarov National University of Shipbuilding, 3 Tsentralnyy Ave., UA-54000 Mykolaiv, Ukraine

Received: 17.07.2019; final version - 18.11.2019. Download: PDF

The article presents the results of research on the development of thermal spray technology for the formation of a nanoscale polygonization substructure using pre-recrystallization heat treatment (PHT). Plasma, electric arc, flame and detonation coatings are considered. The influence of temperature-time parameters of heat treatment and degree of additional deformation on hardness, size of coherent scattering areas, and number of nanostructured elements in coatings is established. The influence of the type of plasma spraying (in air or in a dynamic vacuum) on microstructure of coatings and parameters of their optimal heat treatment is considered. As shown, the pre-recrystallization heat treatment reduces the thermal conductivity of ZrO$_{2}$–7%Y$_{2}$O$_{3}$ thermal barrier plasma coatings by 15% and increases their microhardness by 13%. A method for increasing the exposure time during heat treatment due to additional deformation is proposed. The influence of the types of deformation (static or dynamic) and heat treatment on the thermal stability of the resulting substructure is established. Shot blasting provides stabilization of the polygonal substructure during heat treatment at the exposure duration of 40 minutes. Experimental investigations of the influence of heat treatment, surface plastic deformation, and combined deformation-heat treatment on the bond strength and wear resistance of the electric arc steel coatings from wire 65G are carried out. As established, due to internal stresses reducing, the mentioned heat treatment of 65G wire coatings provides an increase in the bond strength by 30% compared to the coatings after deposition. Heat treatment of additionally deformed coatings provides a significant increase in bond strength compared to heat-treated coatings without deformation. As shown, the heat treatment provides an increase in the wear resistance of coatings from 65G by 45% compared with the state after spraying.

Key words: substructure, thermal spray coatings, hardness, polygonization, heat treatment.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i05/0631.html

DOI: https://doi.org/10.15407/mfint.42.05.0631

PACS: 81.07.Bc, 81.15.Rs, 81.20.Hy, 81.40.Ef, 81.40.Gh, 83.10.Tv, 83.50.Uv

Citation: O. M. Dubovyy, A. A. Karpechenko, M. M. Bobrov, and A. V. Labartkava, Development of Thermal Spray Technology of Forming a Crushed Polygonization Nanosized Substructure, Metallofiz. Noveishie Tekhnol., 42, No. 5: 631—653 (2020) (in Russian)


REFERENCES
  1. O. M. Dubovyy, A. A. Karpechenko, M. M. Bobrov, O. O. Zhdanov, T. O. Makrukha, and Yu. E. Nedelko, Metallofiz. Noveishie Tekhnol., 39, No. 2: 209 (2017) (in Ukrainian). Crossref
  2. V. I. Kalita, A. V. Samokhin, and N. V. Alekseev, Fizika i Khimiya Obrabotki Materialov, No. 2: 37 (2007) (in Russian).
  3. H. Zhang, Univ. Technol. Natur. Sci., 1: 21 (2006).
  4. V. I. Kalita, V. V. Yarkin, A. V. Kasimtsev, and G. U. Lubman, Fizika i Khimiya Obrabotki Materialov, No. 5: 29 (2006) (in Russian).
  5. Yu. K. Kovneristyy, Metallovedenie i Termicheskaya Obrabotka, No. 7: 14 (2005) (in Russian).
  6. N. V. Kurakova, V. V. Molokanov, and V. I. Kalita, Fizika i Khimiya Obrabotki Materialov, No. 4: 36 (2007) (in Russian).
  7. V. P. Alekhin, E. A. Lesyuk, and A. I. Kapranova, Perspektivnye Tekhnologii i Oborudovanie dlya Materialovedeniya, Mikro- i Nanoelektroniki (Astrakhan': MGNU: 2006) (in Russian).
  8. A. V. Voronov, Fizicheskaya Mezomekhanika, No. 8: 113 (2005) (in Russian).
  9. O. M. Dubovyi, T. A. Yankovets, and A. A. Karpechenko, Sposib Nanesennya Pokryttya [Method of Coating], Patent No. 88755: Bul. 21 (2009) (in Ukrainian).
  10. O. M. Dubovyy, N. Yu. Lebedyeva, and T. A. Yankovets, Metaloznavstvo ta Obrobka Metaliv, No. 3: (2010) (in Ukrainian).
  11. K. A. Yushchenko, Yu. S. Borysov, V. D. Kuznetsov, and V. M. Korzh, Inzheneriya Poverkhni [Surface Engineering] (Kyiv: Naukova Dumka: 2007). (in Ukrainian).
  12. S. V. Petrov, Plazmennoe Gazovozdushnoe Napylenie [Plasma Gas Spraying] (Leningrad: Mashinostroenie: 1986) (in Russian).
  13. S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Rekristallizatsiya Metallov i Splavov [Recrystallization of Metals and Alloys] (Moscow: MISIS: 2005) (in Russian).
  14. O. M. Dubovyi and T. A. Yankovets, Zb. Nauk. Prats NUK, 399, No. 6: 43 (2004) (in Ukrainian).
  15. S. S. Gorelik, L.N . Rastorguev, and Yu. A. Skakov, Rentgenograficheskiy i Elektronno-Opticheskiy Analiz [X-Ray and Electron-Optical Analysis] (Moscow: MISIS: 1994) (in Russian).
  16. D. M. Zadoyan, L. A. Azizbekyan, and M. K. Valyuzhenich, Fiz. Tverd. Tela, 19: 177 (2003) (in Russian). Crossref
  17. O. M. Dubovyi, Yu. Ye. Nedielko, M. M. Bobrov, and O. V. Chechel, Zb. Nauk. Prats NUK, No. 4: 35 (2016) (in Ukrainian). Crossref
  18. L. G. Odintsov, Uprochnenie i Otdelka Detalej Poverkhnostnym Plasticheskim Deformirovaniem: Spravochnik [Hardening and Finishing of Parts by Surface Plastic Deformation: a Handbook] (Moscow: Mashinostroenie: 1987) (in Russian).
  19. V. S. Ivashko, Nauka - Obrazovaniyu, Proizvodstvu, Ekonomike (Minsk: 2016) (in Russian).
  20. A. N. Dubovoy, A. A. Karpechenko, O. O. Zhdanov, and M. M. Bobrov, Naukovyj Visnyk NHU, № 1: 82 (2017) (in Russian).
  21. O. M. Dubovyi, A. A. Karpechenko, O. O. Zhdanov, M. M. Bobrov, and T. O. Makrukha, Zb. Nauk. Prats NUK, No. 3: 41 (2015). (in Ukrainian). Crossref