Prediction of Adhesion Energy Terms in Metal/Ceramic Systems by Using Acoustic Parameters

K. Kamli$^{1}$, Z. Hadef$^{1}$, A. Gacem$^{1}$, N. Houaidji$^{2}$

$^{1}$University of 20 August 1955, 26 Road El Hadaiek, 21000 Skikda, Algeria
$^{2}$Badji Mokhtar University, B.P. 12, Sidi Amar, CP 23000 Annaba, Algeria

Received: 04.07.2019; final version - 27.01.2020. Download: PDF

In this paper, we predict the adhesion energy terms in metal/ceramic systems by using acoustic parameters of these combinations. Different approaches are used. Semiempirical relations are deduced for all systems. As shown, in all cases, the adhesion energy $W_{\textrm{ad}}$ increases linearly with Rayleigh velocity of ceramic substrate $V_{RC}$. It takes the form $W_{\textrm{ad}}$ = 0.07$V_{RC}$ + $C$, where the first term of this equation represents the van der Waals contribution to $W_{\textrm{ad}}$, which only depends on $V_{RC}$. The second term represents the equilibrium chemical bonds contribution ($W_{\textrm{chem-equil}}$) and strongly depends on the systems combination as well as on the energy gap of the ceramics substrate. Moreover, the $W_{\textrm{chem-equil}}$ energy is higher for small bandgap ceramic materials due to substantial charge carriers’ density inside ceramic crystal and, consequently, ease and height electron transfer through the metal/ceramic interface. In this case, the $W_{\textrm{chem-equil}}$ is essentially depends on Rayleigh velocity $V_{RM}$ of deposited metal. For large bandgap ceramic materials, there are practically no free charges inside ceramic crystal. In this case, the electrons’ transfer cannot be taking place and, as a result, the $W_{\textrm{chem-equil}}$ contribution is negligible. The importance of obtained relation lies in its universality and applicability to all investigated systems.

Key words: adhesion, metal/ceramic interfaces, energy gap, acoustic parameters.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i05/0717.html

DOI: https://doi.org/10.15407/mfint.42.05.0717

PACS: 43.20.+g, 68.08.-p, 68.35.Md, 68.35.Np, 68.60.Bs, 71.20.Nr

Citation: K. Kamli, Z. Hadef, A. Gacem, and N. Houaidji, Prediction of Adhesion Energy Terms in Metal/Ceramic Systems by Using Acoustic Parameters, Metallofiz. Noveishie Tekhnol., 42, No. 5: 717—731 (2020)


REFERENCES
  1. F. E. Kennedy, Encyclopedia of Physics (Eds. Lerner and Trigg) (Weinheim: Wiley-VCH: 2005).
  2. J. G. Li, Mater. Lett., 22, Nos. 3-4: 169 (1995). Crossref
  3. Yu. V. Naidich, The Progr. Surf. Membr. Sci., 14: 353 (1981). Crossref
  4. I. A. Viktorov, Rayleigh and Lamb Waves (New York: Plenum Press: 1967). Crossref
  5. J. Kushibiki and N. Chubachi, IEEE Trans. Sonics and Ultrasonics, SU32: 189 (1985). Crossref
  6. R. G. Maev, Acoustic Microscopy: Fundamentals and Applications (Berlin: Wiley-VCH: 2008). Crossref
  7. M. Doghmane, F. Hadjoub, A. Doghmane, and Z. Hadjoub, Mater. Letters, 61, No. 3: 813 (2007). Crossref
  8. C. G. R. Sheppard and T. Wilson, Appl. Phys. Let., 38, No. 11: 884 (1981). Crossref
  9. Z. Hadef, A. Doghmane, and K. Kamli, Metallofiz. Noveishie Tekhnol., 40, No. 7: 955 (2018). Crossref
  10. P. V. Zinin, Handbook of Elastic Properties of Solids, Liquids and Gases (Eds. M. Levy, H. Bass, and R. Stern) (New York: Academic Press: 2001).
  11. A. Briggs, Advances in Acoustic Microscopy (New York: Plenum Press: 1995), vol. 1. Crossref
  12. W. H. Strehlow and E. L. Cook, J. Phys. Chem. Ref. Data 2, 2, No. 1: 163 (1973). Crossref
  13. G. A. D. Briggs and O. V. Kolosov, Acoustic Microscopy (Oxford: Oxford Univ. Press: 2010). Crossref
  14. N. Eustathopoulos, N. Sobczak, A. Passerone, and K. Nogi, Mater. Sci., 40: 2271 (2005). Crossref
  15. Yu. V. Naidich, V. S. Zhuravlev, and N. I. Frumina, Mater. Sci., 25: 1895 (1990). Crossref
  16. J.-G. Li, Scripta Metallurgica et Materialia, 30, Iss. 3: 337 (1994). Crossref
  17. N. Y. Taranets and Yu. V. Naidich, Powder Metall. Met. Ceramics, 35, Nos. 5-6: 74 (1996). Crossref
  18. G. W. Liu, M. L. Muolo, F. Valenza, and A. Passerone, Ceram. Inter., 36, No. 4: 1177 (2010). Crossref
  19. M. Kida, M. Bahraini, J. M. Molina, L. Weber, and A. Mortensen, Mater. Sci. Eng. A, 495, Nos. 1-2: 197 (2008). Crossref
  20. Y. Naidich, Current Opinion in Solid State and Materials Science, 9, Iss. 4-5: 161 (2005). Crossref
  21. J.-G. Li, J. Amer. Ceram. Soc., 75, No. 11: 3118 (1992). Crossref
  22. J. G. Li and H. Hausner, Mater. Let, 11, Nos. 10-12: 355 (1991). Crossref
  23. J. G. Li, Comp. Interf., 1, No. 1: 37 (1993). Crossref
  24. J. G. Li and H. Hausner, Mater. Letters, 14 329 (1992). Crossref
  25. D. Chatain, I. Rivollet, and N. Eustathopoulos, J. Chim. Phys., 83: 561 (1986). Crossref
  26. D. Sotiropoulou and P. Nikolopoulos, J. Mater. Sci., 28: 356 (1993). Crossref
  27. J. G. Li, Mater. Sci. Let., 11: 903 (1992). Crossref
  28. J. B. Mc Donald and J. G. Eberhart, Trans. AIME, 233: 512 (1965).
  29. Z. Hadef, A. Doghmane, K. Kamli, and Z. Hadjoub, Prog. Phys. Met., 19, No. 2: 168 (2018). Crossref
  30. S. Blairs, J. Coll. Interf. Sci., 302: 312 (2006). Crossref
  31. O. Olubosede, O. M. Afolabi, R. S. Fayose, E. O. Oniya, and A. C. Tomiwa, Appl. Phys. Res., 3, No. 2: 171 (2011). Crossref