Loading [MathJax]/jax/output/HTML-CSS/jax.js

Prediction of Adhesion Energy Terms in Metal/Ceramic Systems by Using Acoustic Parameters

K. Kamli1, Z. Hadef1, A. Gacem1, N. Houaidji2

1University of 20 August 1955, 26 Road El Hadaiek, 21000 Skikda, Algeria
2Badji Mokhtar University, B.P. 12, Sidi Amar, CP 23000 Annaba, Algeria

Received: 04.07.2019; final version - 27.01.2020. Download: PDF

In this paper, we predict the adhesion energy terms in metal/ceramic systems by using acoustic parameters of these combinations. Different approaches are used. Semiempirical relations are deduced for all systems. As shown, in all cases, the adhesion energy Wad increases linearly with Rayleigh velocity of ceramic substrate VRC. It takes the form Wad = 0.07VRC + C, where the first term of this equation represents the van der Waals contribution to Wad, which only depends on VRC. The second term represents the equilibrium chemical bonds contribution (Wchem-equil) and strongly depends on the systems combination as well as on the energy gap of the ceramics substrate. Moreover, the Wchem-equil energy is higher for small bandgap ceramic materials due to substantial charge carriers’ density inside ceramic crystal and, consequently, ease and height electron transfer through the metal/ceramic interface. In this case, the Wchem-equil is essentially depends on Rayleigh velocity VRM of deposited metal. For large bandgap ceramic materials, there are practically no free charges inside ceramic crystal. In this case, the electrons’ transfer cannot be taking place and, as a result, the Wchem-equil contribution is negligible. The importance of obtained relation lies in its universality and applicability to all investigated systems.

Key words: adhesion, metal/ceramic interfaces, energy gap, acoustic parameters.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i05/0717.html

DOI: https://doi.org/10.15407/mfint.42.05.0717

PACS: 43.20.+g, 68.08.-p, 68.35.Md, 68.35.Np, 68.60.Bs, 71.20.Nr

Citation: K. Kamli, Z. Hadef, A. Gacem, and N. Houaidji, Prediction of Adhesion Energy Terms in Metal/Ceramic Systems by Using Acoustic Parameters, Metallofiz. Noveishie Tekhnol., 42, No. 5: 717—731 (2020)


REFERENCES
  1. F. E. Kennedy, Encyclopedia of Physics (Eds. Lerner and Trigg) (Weinheim: Wiley-VCH: 2005).
  2. J. G. Li, Mater. Lett., 22, Nos. 3-4: 169 (1995). Crossref
  3. Yu. V. Naidich, The Progr. Surf. Membr. Sci., 14: 353 (1981). Crossref
  4. I. A. Viktorov, Rayleigh and Lamb Waves (New York: Plenum Press: 1967). Crossref
  5. J. Kushibiki and N. Chubachi, IEEE Trans. Sonics and Ultrasonics, SU32: 189 (1985). Crossref
  6. R. G. Maev, Acoustic Microscopy: Fundamentals and Applications (Berlin: Wiley-VCH: 2008). Crossref
  7. M. Doghmane, F. Hadjoub, A. Doghmane, and Z. Hadjoub, Mater. Letters, 61, No. 3: 813 (2007). Crossref
  8. C. G. R. Sheppard and T. Wilson, Appl. Phys. Let., 38, No. 11: 884 (1981). Crossref
  9. Z. Hadef, A. Doghmane, and K. Kamli, Metallofiz. Noveishie Tekhnol., 40, No. 7: 955 (2018). Crossref
  10. P. V. Zinin, Handbook of Elastic Properties of Solids, Liquids and Gases (Eds. M. Levy, H. Bass, and R. Stern) (New York: Academic Press: 2001).
  11. A. Briggs, Advances in Acoustic Microscopy (New York: Plenum Press: 1995), vol. 1. Crossref
  12. W. H. Strehlow and E. L. Cook, J. Phys. Chem. Ref. Data 2, 2, No. 1: 163 (1973). Crossref
  13. G. A. D. Briggs and O. V. Kolosov, Acoustic Microscopy (Oxford: Oxford Univ. Press: 2010). Crossref
  14. N. Eustathopoulos, N. Sobczak, A. Passerone, and K. Nogi, Mater. Sci., 40: 2271 (2005). Crossref
  15. Yu. V. Naidich, V. S. Zhuravlev, and N. I. Frumina, Mater. Sci., 25: 1895 (1990). Crossref
  16. J.-G. Li, Scripta Metallurgica et Materialia, 30, Iss. 3: 337 (1994). Crossref
  17. N. Y. Taranets and Yu. V. Naidich, Powder Metall. Met. Ceramics, 35, Nos. 5-6: 74 (1996). Crossref
  18. G. W. Liu, M. L. Muolo, F. Valenza, and A. Passerone, Ceram. Inter., 36, No. 4: 1177 (2010). Crossref
  19. M. Kida, M. Bahraini, J. M. Molina, L. Weber, and A. Mortensen, Mater. Sci. Eng. A, 495, Nos. 1-2: 197 (2008). Crossref
  20. Y. Naidich, Current Opinion in Solid State and Materials Science, 9, Iss. 4-5: 161 (2005). Crossref
  21. J.-G. Li, J. Amer. Ceram. Soc., 75, No. 11: 3118 (1992). Crossref
  22. J. G. Li and H. Hausner, Mater. Let, 11, Nos. 10-12: 355 (1991). Crossref
  23. J. G. Li, Comp. Interf., 1, No. 1: 37 (1993). Crossref
  24. J. G. Li and H. Hausner, Mater. Letters, 14 329 (1992). Crossref
  25. D. Chatain, I. Rivollet, and N. Eustathopoulos, J. Chim. Phys., 83: 561 (1986). Crossref
  26. D. Sotiropoulou and P. Nikolopoulos, J. Mater. Sci., 28: 356 (1993). Crossref
  27. J. G. Li, Mater. Sci. Let., 11: 903 (1992). Crossref
  28. J. B. Mc Donald and J. G. Eberhart, Trans. AIME, 233: 512 (1965).
  29. Z. Hadef, A. Doghmane, K. Kamli, and Z. Hadjoub, Prog. Phys. Met., 19, No. 2: 168 (2018). Crossref
  30. S. Blairs, J. Coll. Interf. Sci., 302: 312 (2006). Crossref
  31. O. Olubosede, O. M. Afolabi, R. S. Fayose, E. O. Oniya, and A. C. Tomiwa, Appl. Phys. Res., 3, No. 2: 171 (2011). Crossref