Improving the Models of Dynamics of Adaptively Controlled Elements and Drives Based on Functional Materials

O. L. Nikolaiev, V. A. Polishchuk, T. P. Zadorozhna

Admiral Makarov National University of Shipbuilding, 9 Heroiv Ukrainy Ave., UA-54000 Mykolaiv, Ukraine

Received: 15.10.2019; final version - 05.05.2020. Download: PDF

The investigation of thermo-mechanical processes in materials and elements with shape memory effect (SME) and the simulation of dynamics of elements and drives based on alloys with shape memory and taking into account the adaptation properties of material are carried out in order to develop adaptive-controlled thermomechanical drives or actuators, heat regulator and automation tools of technological processes. The effect of the thermal cycling modes and the magnitude of deformation, which induces the shape memory effect, on the level of reversibility of the deformation, the implementation of the effect of reversible shape memory, the magnitude of the excited force, and the recoverable deformation are investigated. A generalized dynamic model of a technical mechanism based on the elements with SME is developed. The model formally describes adaptive control of mechanism, based on which, the adaptation algorithms can be synthesized. The developed models can be used in the calculation and design of various thermomechanical drives and actuators, heat regulators, thermal compensators and damping devices based on elements from shape memory alloys, as well as in a synthesis of adaptive control algorithms of continuous and discrete classes in the terminal control, homing guidance and stabilization modes.

Key words: shape memory effect, martensitic transformation, modelling, deformation-force characteristics, thermomechanical actuator, adaptive control.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i06/0885.html

DOI: https://doi.org/10.15407/mfint.42.06.0885

PACS: 02.30.Yy, 62.20.fg, 64.60.Ej, 81.30.Kf, 81.40.Gh

Citation: O. L. Nikolaiev, V. A. Polishchuk, and T. P. Zadorozhna, Improving the Models of Dynamics of Adaptively Controlled Elements and Drives Based on Functional Materials, Metallofiz. Noveishie Tekhnol., 42, No. 6: 885—899 (2020)


REFERENCES
  1. Y. F. Li, X. J. Mi, J. Tan and B. D. Gao, Mater. Sci. Eng. A, 509: 8 (2009). Crossref
  2. K. Otsuka and X. Ren, Prog. Mater. Sci., 50: 511 (2005). Crossref
  3. K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito, and M. Sasaki, Mater. Sci. Eng. A, 419: 131 (2006). Crossref
  4. L. G. Bujoreanu, Mater. Sci. Eng. A, 481: 395 (2008). Crossref
  5. S. N. Solovyev and V. A. Polishchuk, Vestnik Dvigatelestroyeniya, Zaporozhye: OAO 'Motor Sich', No. 2: 25 (2004) (in Russian).
  6. V. Di Cocco, F. Iacoviello, C. Maletta, and S. Natali, Int. J. Fatigue, 58: 136 (2014). Crossref
  7. V. Di Cocco, F. Iacoviello, S. Natali, and V. Volpe, Frattura ed Integrità Strutturale, 30: 454 (2014). Crossref
  8. A. Carpinteri, V. Di Cocco, G. Fortese, F. Iacoviello, S. Natali, C. Ronchei, D. Scorza, S. Vantadori, and A. Zanichelli, Acta Mechanica et Automatica, 12(2): 105 (2018). Crossref
  9. V. A. Polishchuk, O. L. Nikolaev, and T. P. Zadorozhnaya, Zbirnyk Naukovykh Prats Natsionalnogo Universytetu Korablebuduvannya, No. 1: 26 (2016). Crossref
  10. C. Maletta, Int. J. Fracture, 177: 39 (2012). Crossref
  11. C. Maletta and F. Furgiuele, Acta Mater., 58: 92 (2010). Crossref
  12. C. Maletta, F. Furgiuele, and E. Sgambitterra, Fatigue and Fracture of Engineering Materials and Structures, 36: 903 (2013). Crossref
  13. T. Baxevanis and D. Lagoudas, International Journal of Fracture, 191: 191 (2015). Crossref
  14. S. W. Robertson, A. Mehta, A. R. Pelton, and R. O. Ritchie, Acta Mater., 55: 6198 (2007). Crossref
  15. K. Gall, J. Tyber, G. Wilkesanders, S. W. Robertson, R. O. Ritchie, and H. J. Maier, Mater. Sci. Eng. A, 486: 389 (2008). Crossref
  16. V. A. Polishchuk, Zbirnyk Naukovykh Prats Natsionalnogo Universytetu Korablebuduvannya, No. 2: 87 (2000) (in Russian).
  17. S. N. Solovyev, V. A. Polishchuk, and O. L. Nikolaev, Aerospace Technic and Technology, No. 10/26: 183 (2005) (in Russian).
  18. A. V. Timofeyev, Adaptivnye Robototekhnicheskiye Kompleksy [Adaptive Robotic Systems] (Leningrad: Mashinostroyenie: 1988) (in Russian).
  19. A. V. Timofeyev, Postroeniye Adaptivnykh Sistem Upravleniya Programmnym Dvizheniyem [Construction of Adaptive Motion Control Systems] (Leningrad: Energiya: 1980) (in Russian).