Metallic Hydrogen as an Alkali Metal. The Equation of State

V. T. Shvets

Odesa National Academy for Food Technologies, 1/3 Dvoryanska Str., 65082 Odesa, Ukraine

Received: 09.12.2019. Download: PDF

The pair effective proton-proton interactions and equation of state of liquid metallic hydrogen are calculated in a wide range of densities and temperatures. For this, a perturbation theory on the potential of electron-proton interaction is used. In all cases, calculations are carried out with regard to members of the third-order perturbation theory, which today is the maximum possible accuracy of calculations. For conduction electrons the random phase approximation is used. Their exchange interaction and correlation taken into account in local field approximation. For proton subsystem the hard spheres model is used. Their diameter is one of the fitting parameters of this theory. Hard sphere diameter and parking fraction are obtained from the analysis of the pair effective proton-proton interaction. In all the above cases, the role of the third order members is significant. The investigated ranges of density and temperature correspond to the conditions observed in the central part of the gas giant planets. Analysis of the results indicates the possible existence of the solid core of the planets of Jupiter group, caused by crystal state of metallic hydrogen.

Key words: equation of state of metallic hydrogen, hydrogen metallization, thermodynamics of metallic hydrogen, pair effective interaction between protons.



PACS: 05.30.Fk, 05.70.Ce, 05.70.Fh, 61.50.Ks, 71.10.Ca, 72.10.Bg

Citation: V. T. Shvets, Metallic Hydrogen as an Alkali Metal. The Equation of State, Metallofiz. Noveishie Tekhnol., 42, No. 7: 901—917 (2020) (in Ukrainian)

  1. V. L. Ginzburg, Phys.-Usp., 42, No. 4: 353 (1999). Crossref
  2. E. Wigner and H. B. Huntington, J. Chem. Phys., 3, No. 12: 764 (1935). Crossref
  3. Ranga P. Dias and Isaac F. Silvera, Science, 355, No. 6326: 715 (2017). Crossref
  4. S. Deemyad and I. F. Silvera, Phys. Rev. Lett., 100, No. 15: 5701 (2008). Crossref
  5. S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett., 76, No. 11: 1860 (1996). Crossref
  6. W. J. Nellis, S. T. Weir, and A. C. Mitchell, Phys. Rev. B, 59, No. 5: 3434 (1999). Crossref
  7. W. J. Nellis, Philos. Mag. B, 79: 655 (1999). Crossref
  8. M. Bastea, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett., 86: 3108 (2001). Crossref
  9. R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis, Phys. Rev. Lett., 90: 245501 (2003). Crossref
  10. V. E. Fortov, V. Ya. Ternovoi, S. V. Kvitov, V. B. Mintsev, D. N. Nikolaev, A. A. Pyalling, and. A. S. Filimonov, JETP Lett., 69, No. 12: 926 (1999). Crossref
  11. V. Ya. Ternovoi, A. S. Filimonov, V. E. Fortov, S. V. Kvitov, D. N. Nikolaev, and A. A. Pyaling, Physica B (Amsterdam), 265: 6 (1999). Crossref
  12. J. M. McMahon, M. A. Morales, C. Pierleoni, and D. M. Ceperley, Rev. Mod. Phys., 84: 1607 (2012). Crossref
  13. J. McMinis, R. C. Clay, D. Lee, and M. A. Morales, Phys. Rev. Lett., 114: 105305 (2015). Crossref
  14. S. Azadi, B. Monserrat, W. M. C. Foulkes, and R. J. Needs, Phys. Rev. Lett., 112: 165501 (2014). Crossref
  15. V. T. Shvets, JETP, 104, No. 4: 655 (2007). Crossref
  16. V. T. Shvets, S. V. Datsko, and Ye. K. Malinovskij, Ukr. J. Phys., 52, No. 1: 70 (2007).
  17. J. Waseda and K. Suzuki, Sci. Rep. Res. Inst., TbhokuUniv. A, 24, No. 4: 139 (1973).
  18. E. G. Brovman, Yu. Kagan, and A. Kholas, Soviet Physics JETP, 34, No. 6: 1300 (1972).
  19. E. G. Brovman, Yu. Kagan, and A. Kholas, Soviet Physics JETF, 34, No. 2: 394 (1971).
  20. E. G. Brovman, Yu. Kagan, and A. Kholas, Soviet Physics JETF, 35, No. 4: 783 (1972).
  21. W. A. Harrison, Psevdopotentsialy v Teorii Metallov [Pseudopotentials in the Theory of Metals] (Moscow: Mir: 1968) (in Russian).
  22. V. T. Shvets, Metod Funktsij Grina v Teorii Metaliv [Method of Green's Functions in the Theory of Metals] (Odesa: Latstar: 2002] (in Ukrainian).
  23. V. T. Shvets, Extremalnyj Stan Rechovyny. Metalizatsia Gaziv [Extreme State of Matter. Metallization of Gases] (Kherson: Vydavets Grin D. S.: 2016) (in Ukrainian).
  24. E. G. Brovman and Yu. M. Kagan, Sov. Phys. Usp., 17, No. 3: 125 (1974). Crossref
  25. I. A. Vakarchuk, Introduction to the Many-Body Problem (Lviv: Lviv National University: 1999) (in Ukrainian).
  26. W. H. Shih and D. Stroud, Phys. Rev. B: Condens. Matter, 31: 3715 (1985). Crossref
  27. P. Lloyd and C. A. Shall, J. Phys. C: Solid State Phys., 1, No. 6: 1620 (1968). Crossref
  28. J. Hammerberg and N. W. Ashcroft, Phys. Rev. B: Solid State, 9: 3999 (1974). Crossref
  29. L. Ballentine and V. Heine, Philos. Mag., 9: 617 (1964). Crossref
  30. D. J. M. Geldart and S. H. Vosko, Can. J. Phys., 44, No. 9: 2137 (1966). Crossref
  31. E. G. Brovman and Yu. Kagan, Soviet Physics JETF, 36, No. 5: 1025 (1972).
  32. V. T. Shvets, Phys. Met. Metallogr., 89, No. 3: 211 (2000).
  33. V. T. Shvets, S. V. Savenko, and Ye. K. Malinovskiy, Condens. Matter Phys., 9: 1 (2006). Crossref
  34. V. T. Shvets, JETP Lett., 95, No. 1: 29 (2012). Crossref
  35. V. T. Shvets, Ukr. J. Phys., 55, No. 2: 251 (2010).