Modulation of Frequency Dependence of a Metal Nanoparticle Electroconductivity

N. I. Grigorchuk

Bogolyubov Institute for Theoretical Physics, NAS of Ukraine, 14-b Metrologichna Str., UA-03143 Kyiv, Ukraine

Received: 29.01.2020. Download: PDF

The method for revealing of the weak oscillations in the frequency dependence of the electroconductivity of the metallic nanoparticles is proposed. The calculations are realized using the kinetic equations method which allows accounting effectively the electron scattering on the inner surface of the particle. The frequency dependence of the ratio of kinetic $\sigma_{\textrm{kinet}}$($\omega$) and classic $\sigma_{\textrm{clas}}$($\omega$) electroconductivities for spherical metal nanoparticles of an arbitrary sizes is investigated. The amplification of the weak oscillations of the kinetic electroconductivity with frequency is established in metal nanoparticle for ratio of $\sigma_{\textrm{kinet}}$($\omega$)/$\sigma_{\textrm{clas}}$($\omega$). It has the greater amplitude than smaller radius of metal nanoparticle is. The Ag nanoparticle is used as an example for illustration.

Key words: metal nanoparticles, oscillations of electroconductivity, electron scattering.



PACS: 71.45.Gm, 73.20.Mf, 73.23.-b, 73.63.-b, 78.67.Bf

Citation: N. I. Grigorchuk, Modulation of Frequency Dependence of a Metal Nanoparticle Electroconductivity, Metallofiz. Noveishie Tekhnol., 42, No. 7: 929—937 (2020) (in Ukrainian)

  1. J. T. Lue, Encyclopedia of Nanoscience and Nanotechnology (Valencia: American Scientific Publishers: 2007), vol. X.
  2. C. F. Bohren and D. R. Huffmun, Absorption and Scattering of Light by Small Particles (Weinheim: Wiley: 2004).
  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Berlin: Springer-Verlag: 1995). Crossref
  4. H. C. van de Hulst, Light Scattering by Small Particles (New York: Dover Publication: 2000).
  5. T. Devcota, B. S. Brown, G. Beane, K. Yu, and G.V. Hartland, J. Chem. Phys., 151: 080901 (2019). Crossref
  6. A. J. Alexander and P. J. Camp, J. Chem. Phys., 150: 040901 (2019). Crossref
  7. J. Liu, I. Parakonstantinou, H. Hu, and X. Shao, Optics Lett., 44: 3829 (2019). Crossref
  8. I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov, Electron Theory of Metals (New York: Consultants Bureau: 1973).
  9. N. I. Grigorchuk and P. M. Tomchuk, Ukr. J. Phys., 51: 921 (2006).
  10. N. I. Grigorchuk and P. M. Tomchuk, Low Temp. Phys., 31: 411 (2005). Crossref
  11. V. Amendola, R. Pilot, M. Frasconi, O. M. Marago, and M. A. Iati, J. Phys.: Condens. Matter, 29: 203002 (2017). Crossref
  12. E. A. Coronado and G. C. Schatz, J. Chem. Phys., 119: 3926 (2003). Crossref
  13. D. M. Wood and N. W. Ashcroft, Phys. Rev. B, 25: 6255 (1982). Crossref
  14. K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem., 58: 267 (2007). Crossref
  15. C.-D. Chen, S.-F. Cheng, L.-K. Chau, and C. R. C. Wang, Biosens. Bioelectron., 22: 926 (2007). Crossref
  16. S. Nie and S. R. Emory, Science, 275: 1102 (1997). Crossref
  17. D. Li and Y. Xia, Nat. Mater., 3: 753 (2004). Crossref
  18. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett., 4: 1085 (2004). Crossref
  19. S. Lal, S. Link, and N. J. Halas, Nature Fotonics, 1: 641 (2007). Crossref
  20. N. I. Grygorchuk, Metallofiz. Noveishie Tekhnol., 38, No. 6: 717 (2016) (in Ukrainian). Crossref
  21. N. I. Grigorchuk, Eur. Phys. Lett., 121: 67003 (2018). Crossref
  22. Ch. Kittel, Introduction to Solid State Physics (New York: Wiley: 1974).
  23. G. W. Kaye and T. H. Laby, Tables Physical and Chemical Constants (London: Longmans, Green & Co.: 1959).