Effects of Surface Passivation of Fe-Based Amorphous Compositions as a Result of Bombardment by Low-Energy Ar$^+$ Ions

M. O. Vasylyev, S. I. Sidorenko, T. I. Bratus, S. І. Konorev

National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received: 10.12.2019. Download: PDF

In this work, we study the effect of low-energy bombardment by inert gas (Ar) ions on the kinetics of the initial stages of oxidation and passivation of the surface of amorphous iron-based compositions Fe$_{80}$В$_{20}$, Fe$_{40}$Ni$_{40}$P$_{16}$B$_4$, Fe$_{75}$Cr$_5$P$_{13}$C$_7$. Samples are bombarded by Аr$^+$ ions (5 keV) with doses of 10$^{15}$, 10$^{16}$, 10$^{17}$ ion/cm$^2$. The Auger electron spectroscopy method is used to study the kinetics of the oxygen adsorption and the initial stage of oxidation, depending on the value of exposure of oxygen and of the ion irradiation dose. A change in kinetics is associated with the formation, concentration, and distribution of radiation defects. In this case, the passivation effect is explained by the blocking effect of the introduced ions Ar due to the decreasing the number of both chemisorption centres and penetration places for oxygen atoms.

Key words: amorphous compositions, Auger electron spectroscopy, oxidation, ion bombardment, surface segregation.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i07/0963.html

DOI: https://doi.org/10.15407/mfint.42.07.0963

PACS: 61.80.Lj, 61.82.Bg, 68.35.bd, 68.35.Np, 68.49.Df, 81.65.Rv

Citation: M. O. Vasylyev, S. I. Sidorenko, T. I. Bratus, and S. І. Konorev, Effects of Surface Passivation of Fe-Based Amorphous Compositions as a Result of Bombardment by Low-Energy Ar$^+$ Ions, Metallofiz. Noveishie Tekhnol., 42, No. 7: 963—976 (2020) (in Ukrainian)

  1. S. Zuccon, E. Napolitani, E. Tessarolo, P. Zuppella, A. J. Corso, F. Gerlin, M. Nardello, and M. G. Pelizzo, Opt. Mater. Express, 5: 176 (2015). Crossref
  2. X. Li, K.-W. Lin, H.-T. Liang, H.-F. Hsu, N. G. Galkin, Y. Wroczynskyj, J. van Lierop, and P. W. T. Pong, Nucl. Instrum. Methods Phys. Res. B, 365: 196 (2015). Crossref
  3. L. Repetto, R. Lo Savio, B. Šetina Batic, G. Firpo, E. Angeli, and U. Valbusa, Nucl. Instrum. Methods Phys. Res. B, 354: 28 (2015). Crossref
  4. Parikshit Phadke, Jacobus M. Sturm, Robbert W. E. van de Kruijs, and Fred Bijkerk, Appl. Surf. Sci., 26: 144529 (2019). Crossref
  5. P. Prieto, J. F. Marco, A. Serrano, M. Manso, and J. de la Figuera, J. Alloys and Compounds, 810: 15191225 (2019). Crossref
  6. W. Sakiew, S. Schrameyer, M. Jupé, P. Schwerdtner, N. Erhart, K. Starke, and D. Ristau, Thin Solid Films, 682: 109 (2019). Crossref
  7. S. Ninomiya, K. Ichiki, H. Yamada, Y. Nakata, T. Seki, T. Aoki, and J. Matsuo, Surf. Interface Anal., 43: 95 (2011). Crossref
  8. Y. Fujiwara and N. Saito, Appl. Phys. Express, 8: 076601 (2015). Crossref
  9. M. Sugiyama and G. Sigesato, J. Electron Microscopy, 53: 527 (2004). Crossref
  10. T. A. Bakhsh, A. Sadr, and J. Tagami, J. Adhes. Sci. Technol., 29: 232 (2015). Crossref
  11. R. K. Sherburne and H. E. Farnsworth, J. Chem. Phys., 19: 387 (1951). Crossref
  12. V. Ashworth, D. Baxter, W. A. Grant, and R. P. M. Procter, Corrosion Science, 16: 393 (1976). Crossref
  13. V. T. Cherepin, M. A. Vasil'ev, and Yu. N. Ivashchenko, Dokl. AN SSSR, 210: 821 (1973) (in Russian).
  14. V. T. Cherepin, A. A. Kosyachkov, and M. A. Vasiliev, Surf. Sci., 58: 609 (1976). Crossref
  15. R. Miranda, J. M. Rojo, and M. Salmeron, Solid State Comm., 35: 83 (1980). Crossref
  16. L. Gonzalez, R. Miranda, and S. Ferrer, Solid State Comm., 44: 1461 (1982). Crossref
  17. R. Miranda and J. M. Rojo, Vacuum, 34: 1069 (1984). Crossref
  18. S. P. Chenakin, Vacuum, 36: 635 (1986). Crossref
  19. S. P. Chenakin, Appl. Surface Sci., 84: 91 (1995). Crossref
  20. T. I. Bratus', M. A. Vasil'ev, Yu. A. Kunitskiy, and V. T. Cherepin, Poverkhnost', No. 9: 60 (1982) (in Russian).
  21. W. A. Grant, Nucl. Instrum. and Meth., 182/183: 809 (1981). Crossref
  22. V. Yu. Vasil'ev, Zashchita Metallov, 19: 382 (1983) (in Russian).
  23. V. Yu. Vasil'ev, M. V. Zudin, and N. N. Rodin, Zashchita Metallov, 19: 401 (1983) (in Russian).
  24. A. M. Glezer and B. V. Molotilov, Struktura i Mekhanicheskie Svoystva Amorfnykh Splavov [The Structure and Mechanical Properties of Amorphous Alloys] (Moscow: Metallurgiya: 1992) (in Russian).
  25. A. M. Glezer, I. E. Permyakova, V. E. Gromov, and V. V. Kovalenko, Mekhanicheskoe Povedenie Amorfnikh Splavov [The Mechanical Behaviour of Amorphous Alloys] (Novokuznetsk: SibGIU: 2006) (in Russian).
  26. V. V. Maslov, V. K. Nosenko, L. E. Taranenko, and A. P. Brovko, Fiz. Met. Metalloved., 91: 47 (2001) (in Russian).
  27. M. Vasylyev, S. Sidorenko, S. Voloshko, and I. Kruhlov, Nanoscience and Nanotechnology, 18: 33 (2018).
  28. M. O. Vasylyev, S. I. Sidorenko, S. M. Voloshko, and T. Ishikawa, Usp. Fiz. Met., 17: 209 (2016). Crossref
  29. V. V. Nemoshkalenko, Amorfnye Metallicheskie Splavy [Amorphous Metal Alloys] (Kyiv: Naukova Dumka: 1987) (in Russian).