Surface Modification of Аl–6Мg Alloy by Electric Discharge Alloying with Copper and Ultrasonic Impact Treatment for Enhanced Corrosion Resistance

B. N. Mordyuk$^{1}$, S. М. Voloshko$^{2}$, А. P. Burmak$^{2}$, D. S. Malakhov$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received: 12.04.2020. Download: PDF

To modify a surface layer of the AMg6 aluminium alloy a combined approach comprising electric discharge surface alloying (EDSA) with a copper electrode followed by ultrasonic impact treatment (UIT) is used. The EDSA process promotes surface hardening by forming the surface layer of $\cong$ 25 µm thick containing the Аl$_2$Cu and Al$_6$Mg$_4$Cu intermetallic phases. Ultrasonic impact treatment causes the refinement of grain/subgrain structure, increases microhardness by 70–80% and promotes intensification of the mass transfer of the alloying element. The combined treatment results in significant hardening and enhancement in corrosion resistance of the modified surface layers of the Al–6Mg alloy as compared to the annealed state. Structural factors promoting the corrosion resistance enhancement of the modified surface are discussed.

Key words: Al–6Mg alloy, electric spark alloying, ultrasonic impact treatment, mass transfer, phase composition, corrosion resistance.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i07/0997.html

DOI: https://doi.org/10.15407/mfint.42.07.0997

PACS: 43.35.+d, 62.20.Qp, 68.35.Dv, 68.35.Gy, 81.40.Np, 81.65.Kn, 83.10.Tv

Citation: B. N. Mordyuk, S. М. Voloshko, А. P. Burmak, and D. S. Malakhov, Surface Modification of Аl–6Мg Alloy by Electric Discharge Alloying with Copper and Ultrasonic Impact Treatment for Enhanced Corrosion Resistance, Metallofiz. Noveishie Tekhnol., 42, No. 7: 997—1013 (2020) (in Ukrainian)


REFERENCES
  1. Y. Estrin and A. Vinogradov, Acta Mater., 61: 782 (2013). Crossref
  2. A. M. Sulima and M. I. Evstigneev, Kachestvo Poverkhnostnogo Sloya i Ustalostnaya Prochnost Detaley iz Zharoprochnykh i Titanovykh Splavov (Moscow: Mashynostroenie: 1974) (in Russian).
  3. B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, and M. O. Iefimov, Mater. Sci. Eng. A, 458: 253 (2007). Crossref
  4. B. N. Mordyuk and G. I. Prokopenko, J. Sound Vib., 308: 855 (2007). Crossref
  5. B. N. Mordyuk and G. I. Prokopenko, Handbook of Mechanical Nanostructuring (Ed. M. Aliofkhazraei) (Wiley-VCH: 2015), p. 417. Crossref
  6. H. I. Prokopenko, B. M. Mordyuk, M. O. Vasylyev, and S. M. Voloshko, Fizychni Osnovy Ultrazvukovoho Udarnoho Zmitsnennya Metalevykh Poverkhon [Physical Principles for Ultrasonic Impact Hardening of Metal Surfaces] (Kyiv: Naukova Dumka: 2017) (in Ukrainian).
  7. M. Król, T. Tański, P. Snopiński, and B. Tomichek, J. Therm. Anal. Calorim., 127: 299 (2017). Crossref
  8. B. N. Mordyuk, V. V. Silbershmidt, G. I. Prokopenko, Yu. V. Nesterenko, and M. O. Iefimov, Mater. Characterizations, 61: 1126 (2010). Crossref
  9. B. N. Mordyuk, M. O. Iefimov, K. E. Grinkevich, M. I. Danylenko, and A. V. Samelyuk, Surf. Coat. Technol., 204: 5278 (2011). Crossref
  10. B. N. Mordyuk, G. I. Prokopenko, Yu. V. Milman, M. O. Iefimov, and A. V. Sameljuk, Mater. Sci. Eng. A, 563: 138 (2013). Crossref
  11. N. I. Lazarenko, Elektroiskrovoe Legirovanie Metallicheskikh Poverkhnostey [Electric-Spark Alloying of Metallic Surfaces] (Moscow: Mashinostroenie: 1976) (in Russian).
  12. N. M. Chigrinova, A. A. Kuleshov, and V. V. Nelaev, Elektronnaya Obrabotka Materialov, No. 2: 27 (2010) (in Russian).
  13. V. F. Mazanko, D. S. Gertzriken, S. A. Bobyr, V. M. Mironov, and D. V. Mironov, Iskrovoy Razryad i Diffuzionnye Protsessy v Metallakh [Spark Discharge and Diffusion Processes in Metals] (Kyiv: Naukova Dumka: 2014) (in Russian).
  14. A. G. Kosenko and E. S. Danilchenko, Nauchnyy Vestnik DGMA, No. 1: 106 (2009) (in Russian).
  15. B. N. Mordyuk, G. I. Prokopenko, P. Yu. Volosevych, L. E. Matokhnyuk, A. V. Byalonovich, and T. V. Popova, Mater. Sci. Eng. A, 659: 119 (2016). Crossref
  16. B. N. Mordyuk, G. I. Prokopenko, K. E. Grinkevych, N. A. Piskun, and T. V. Popova, Surf. Coat. Technol., 309: 969 (2017). Crossref
  17. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, A. P. Burmak, I. O. Kruhlov, and V. I. Zakiev, Surf. Coat. Technol., 361: 413 (2019). Crossref
  18. M. A. Vasylyev, B. N. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Surf. Eng., 34, No. 4: 324 (2018). Crossref
  19. E. L. Huskins, B. Cao, and K. T. Ramesh, Mater. Sci. Eng. A, 527: 1292 (2010). Crossref
  20. M. O. Vasylyev, B. M. Mordyuk, S. I. Sidorenko, S. M. Voloshko, A. P. Burmak, and N. V. Franchik, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1097 (2017) (in Ukrainian). Crossref
  21. N. I. Khripta, O. P. Karasevska, and B. N. Mordyuk, J. Mater. Eng. Perform., 26, No. 11: 5446 (2017). Crossref
  22. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 103: 761 (2016). Crossref
  23. N. Birbilis and R. G. Buchheit, J. Electrochem. Soc., 152, Iss. 4: B140 (2005). Crossref