Features of Multicomponent Diffusion of Alloying Elements in Titanium Metastable $\beta$-Alloys at Continuous Rapid Heating

V. I. Bondarchuk, P. E. Markovsky

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 20.09.2019; final version - 04.05.2020. Download: PDF

Features of a competitive diffusion of individual alloying elements in high-temperature $\beta$-phase of titanium alloys of the metastable $\beta$-class under non-equilibrium conditions of continuous rapid heating are investigated using a few commercial alloys. As established, the rate of diffusion redistribution of alloying elements in $\beta$-phase depends not so much on their total concentration (expressed by the integral content of $\beta$-stabilizing elements in molybdenum equivalent $C^{\textrm{Mo}}_0$), but on the rates of diffusion of individual elements. Iron concentration is homogenized thought high-temperature $\beta$-phase at first, chromium concentration equalizes somewhat slower, and the concentration of $\beta$-stabilizers of isomorphic type (like vanadium or molybdenum) smoothes most slowly. This leads to the fact that, similarly to carbon steels, in the titanium alloys of metastable $\beta$-class under non-equilibrium conditions of rapid heating in the beginning the para- (partial) and then the ortho- (complete) equilibrium distributions are formed for $\beta$-stabilizers of eutectoid and isomorphic type, respectively.

Key words: titanium alloys, metastable $\beta$-phase, phase transformations, alloying elements, diffusion, chemical inhomogeneity.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i09/1217.html

DOI: https://doi.org/10.15407/mfint.42.09.1217

PACS: 64.60.My, 64.70.Kd, 68.35.Dv, 68.35.Fx, 81.05.Bx, 81.40.Ef

Citation: V. I. Bondarchuk and P. E. Markovsky, Features of Multicomponent Diffusion of Alloying Elements in Titanium Metastable $\beta$-Alloys at Continuous Rapid Heating, Metallofiz. Noveishie Tekhnol., 42, No. 9: 1217—1230 (2020)

  1. U. Zwicker, Titan und Titanlegierungen (Berlin: Springer-Verlag: 1974). Crossref
  2. G. Lütjering and J.C. Williams, Titanium (Springer: 2003). Crossref
  3. S. Huang, J. Zhang, Y. Ma, S. Zhang, S. S. Youssef, M. Qi, H. Wang, J. Qiu, D. Xu, J. Lei, and R. Yang, J. Alloys Compd., 791: 575 (2019). Crossref
  4. L. R. Zeng, H. L. Chen, X. Li, L. M. Lei, and G. P. Zang, J. Mater. Sci. Technology, 34, Iss. 5: 782 (2018). Crossref
  5. G. Charrier, M. Dehmas, M. Descoins, D. Mangelinck, E. Aeby‐Gautier, B. Appolaire, S. Andrieu, and F. Soniak, Proceedings of the 13th World Conf. on Titanium (2016), p. 547. Crossref
  6. E. W. Collings, The Physical Metallurgy of Titanium Alloys (American Society for Metals: 1984).
  7. O. M. Ivasishin and P. E. Markovsky, Metallofizika, 6, No. 5: 135 (1984) (in Russian).
  8. O. Ivasishin and H. M. Flower, J. Mater. Sci., 21: 2519 (1986). Crossref
  9. P. E. Markovsky, Metallofiz. Noveishie Tekhnol., 31, No. 4: 511 (2009) (in Russian).
  10. P. Ye. Markovsky, Fizyko-Tekhnolohichni Osnovy Formuvannya Vysokomitsnykh Strukturnykh Staniv u Tytanovykh Splavakh Termichnoyu Obrobkoyu v Suttyevo Nerivnovazhnykh Umovakh (Thesis of Disser. for Dr. Techn. Sci.) (Kyiv: G.V. Kurdyumov Institute for Metal Physics, N.A.S.U.: 2011) (in Ukrainian).
  11. O. M. Ivasishin, P. E. Markovsky, Yu. V. Matviychuk, and S. L. Semiatin, Metall. Mater. Trans. A, 34: 147 (2003). Crossref
  12. O. M. Ivasishin, P. E. Markovsky, Yu. V. Matviychuk, S. L. Semiatin, C. H. Ward, and S. Fox, J. Alloys Compd., 457, Iss. 1-2: 296 (2008). Crossref
  13. P. E. Markovsky and Masahiko Ikeda, Chemical Mechanics of Materials, No. 1: 78 (2013) (in Ukrainian).
  14. H. Nakajima and M. Koiwa, ISIJ International, 31, Iss. 8: 757 (1991). Crossref
  15. E. Kozeschnik and J. M. Vitek, Calphad, 24, Iss. 4: 495 (2000). Crossref
  16. H. Nakajima, M. Koiwa, and S. Ono, Scripta Metallurgica, 17, Iss. 12: 1431 (1983). Crossref