Thermodynamic Prediction of Phase Composition of Transition Metals High-Entropy Alloys

A. B. Melnick, V. K. Soolshenko, K. H. Levchuk

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 20.08.2020. Download: PDF

Compositions with minimal Gibbs free energy for single- and multi-phase high-entropy alloys (HEAs) containing Ni, Co, Fe, Cr, Cu, Al, Mn, Ti, Zr, V elements are developed using a developed thermodynamic approach. The phase compositions for some equiatomic HEAs are predicted and the influence of various factors on its formation are described. A correlation between theoretical and experimental data is obtained. Criteria for search of HEAs compositions favourable for formation of single-phase and multi-phase solid solutions are formulated.

Key words: thermodynamic prediction, high-entropy alloys, solid solution, intermetallic compounds.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i10/1387.html

DOI: https://doi.org/10.15407/mfint.42.10.1387

PACS: 05.10.Ln, 05.70.-a, 65.40.G-, 81.30.Bx, 81.30.Fb

Citation: A. B. Melnick, V. K. Soolshenko, and K. H. Levchuk, Thermodynamic Prediction of Phase Composition of Transition Metals High-Entropy Alloys, Metallofiz. Noveishie Tekhnol., 42, No. 10: 1387—1400 (2020)


REFERENCES
  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.‐H. Tsau, and S.‐Y. Chang, Adv. Eng. Mater., 6: 299 (2004). Crossref
  2. J.-W. Yeh, JOM, 65: 1759 (2013). Crossref
  3. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, Prog. Mater. Sci., 61: 1 (2014). Crossref
  4. M. H. Tsai and J. W. Yeh, Mater. Res. Lett., 2: 107 (2014). Crossref
  5. D. B. Miracle and O. N. Senkov, Acta Mater., 122: 448 (2017). Crossref
  6. M. C. Gao, C. Zhang, P. Gao, F. Zhang, L. Z. Ouyang, M. Widom, and J. A. Hawk, Curr. Opin. Solid State Mater. Sci., 21: 238 (2017). Crossref
  7. Y. Tan, J. Li, S. Tang, J. Wang, and H. Kou, J. Alloys Compd., 742: 430 (2018). Crossref
  8. F. Tian, L. K. Varga, N. Chen, L. Delczeg, and L. Vitos, Phys. Rev. B, 87: 075144 (2013). Crossref
  9. F. Tian, L. Delczeg, N. Chen, L. K. Varga, J. Shen, and L. Vitos, Phys. Rev. B, 88: 085128 (2013). Crossref
  10. Prashant Singh, A. V. Smirnov, and D. D. Johnson, Phys. Rev. B, 91, Iss. 22: 224204 (2015). Crossref
  11. D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, and D. Raabe, Acta Mater., 100: 90 (2015). Crossref
  12. C. Jiang and B. P. Uberuaga, Phys. Rev. Lett., 116: 105501 (2016). Crossref
  13. M. C. Troparevsky, J. R. Morris, P. R. C. Kent, A. R. Lupini, and G. M. Stocks, Phys. Rev. X, 5: 011041 (2015). Crossref
  14. F. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, and U. R. Kattner, CALPHAD, 5: 1 (2014). Crossref
  15. C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM, 64: 839 (2012). Crossref
  16. O. N. Senkov, J. D. Miller, D. B. Miracle, and C. Woodward, Nature Comm., 6 (2015) 6529. Crossref
  17. U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases (CRC Press: 2010). Crossref
  18. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, Adv. Eng. Mater., 10: 534 (2008). Crossref
  19. Y. Zhang, Z. P. Lu, S. G. Ma, P. K. Liaw, Z. Tang, Y. Q. Cheng, and M. C. Gao, MRS Commun., 4: 57 (2014). Crossref
  20. S. Guo, C. Ng, J. Lu, and C. T. Liu, J. Appl. Phys., 109: 103505 (2011). Crossref
  21. S. Fang, X. Xiao, L. Xia, W. Li, and Y. Dong, J. Non-Cryst. Solids, 321: 120 (2003). Crossref
  22. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, Scr. Mater., 104: 53 (2015). Crossref
  23. A. F. Andreoli, J. Orava , P. K. Liaw , H. Weber , M. F. De Oliveira , K. Nielsch, and I. Kaban, Materialia, 5: 100222 (2019). Crossref
  24. A. Takeuchi and A. Inoue, Mater. Sci. Eng. A, 304-306: 446 (2001). Crossref
  25. F. R. Boer, R. Boom, W. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals: Transition Metal Alloys (Amsterdam, North-Holland: 1988).
  26. A. B. Melnick and V. K. Soolshenko, J. Alloy. Compd., 694: 223 (2017). Crossref
  27. B. Cantor, I. Chang, P. Knight, and A. Vincent, Mater. Sci. Eng. A, 375-377: 213 (2004). Crossref
  28. F. He, Z. Wang, Q. Wu, S. Niu, J. Li, J. Wang, and C. T. Liu, Scr. Mater., 131: 42 (2017). Crossref
  29. L. Ya. Ropyak, I. P. Shatskyi, and M. V. Makoviichuk, Metallofiz. Noveishie Tekhnol., 39, No. 4: 517 (2017) (in Ukrainian). Crossref
  30. A. Takeuchi and A. Inoue, Mater. Trans., 41: 1372 (2000). Crossref
  31. A. Takeuchi and A. Inoue, Mater. Trans., 46: 2817 (2005). Crossref
  32. A. K. Niessen and A. R. Miedema, Berichte der Bunsengesellschaft für Physikalische Chemie, 87, Iss. 9: 717 (1983). Crossref
  33. The Periodic Table of the Elements, http://www.webelements.com
  34. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, Adv. Eng. Mater., 10: 534 (2008). Crossref
  35. X. Yang and Y. Zhang, Materials Chem. Phys., 132: 233 (2012). Crossref
  36. A. B. Melnick, V. Ya. Beloshapka, and V. K. Soolshenko, Nanosistemi, Nanomateriali, Nanotekhnologii, 17, No. 3: 557 (2019). Crossref
  37. X. F. Wang, Y. Zhang, Y. Qiao, and G. L. Chen, Intermetallics, 15: 357 (2007). Crossref
  38. Y.-F. Kao, T.-J. Chen, S.-K. Chen, and J.-W. Yeh, J. Alloys Compd., 488: 57 (2009). Crossref
  39. M.-H. Tsai, J.-H. Li, A.-C. Fan, and P.-H. Tsai, Scr. Mater., 127: 6 (2017). Crossref
  40. C. Li, J. C. Li, M. Zhao, and Q. Jiang, J. Alloys Compd., 475: 752 (2009). Crossref
  41. F. Otto, Y. Yang, H. Bei, and E.P. George, Acta Mater., 61: 2628 (2013). Crossref
  42. H.-Y. Chen, C.-W. Tsai, C.-C. Tung, J.-W. Yeh, T.-T. Shun, C.-C. Yang, and S.-K. Chen, Ann. Chim. Sci. Matér., 31: 685 (2006). Crossref
  43. C.-C. Tung, J.-W. Yeh, T.-t. Shun, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, Mater. Lett., 61, Iss. 1: 1 (2007). Crossref
  44. B. S. Li, Y. P. Wang, M. X. Ren, C. Yang, and H. Z. Fu, Mater. Sci. Eng. A, 498: 482 (2008). Crossref