Structural-Phase Transformations in Surface Layers of Cobalt-Based Alloys with Titanium Carbide after Ultrasound Impact Treatment

M. A. Vasylyev$^{1}$, B. N. Mordyuk$^{1}$, Т. S. Cherepova$^{1}$, S. M. Voloshko$^{2}$, A. P. Burmak$^{2}$, V. V. Mohylko$^{2}$, M. M. Voron$^{3}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{3}$Physico-Technological Institute of Metals and Alloys, NAS of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 20.06.2020. Download: PDF

Ultrasonic impact treatment (UIT) is used to strengthening and densification of the surface layer of cobalt-based alloys with carbide hardening. The UIT induced structural-phase transformations provide a significant increase in hardness depending on the initial content of the carbide phase in the alloy. The hardening mechanism is due to the subdivision process of the subgrain/grain structure, the refinement of carbide particles, the elimination of porosity in the near-surface region, and concentration changes in the composition. A synergistic effect of carbide hardening and UIT allows achieving the maximum value of Vickers hardness of 16 GPa. Owing to the UIT influence, the 1.5 times increase in hardness of the alloy contained 60 vol.% of TiC can be achieved. In the UIT modified layer, the concentrations of carbon, titanium, and cobalt in the modified layer are revealed to be $\sim$20 at.%, the concentrations of chromium, iron, and nickel are $\sim$10 at.%. This chemical composition is characteristic for high-entropy alloys and can be an additional strengthening factor.

Key words: alloy, ultrasonic impact treatment, carbide inclusions, mass transfer, phase composition.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i10/1401.html

DOI: https://doi.org/10.15407/mfint.42.10.1401

PACS: 61.72.uf, 68.35.bj, 81.40.Np, 81.40.Wx, 81.65.-b

Citation: M. A. Vasylyev, B. N. Mordyuk, Т. S. Cherepova, S. M. Voloshko, A. P. Burmak, V. V. Mohylko, and M. M. Voron, Structural-Phase Transformations in Surface Layers of Cobalt-Based Alloys with Titanium Carbide after Ultrasound Impact Treatment, Metallofiz. Noveishie Tekhnol., 42, No. 10: 1401—1417 (2020) (in Ukrainian)


REFERENCES
  1. I. M. Lyubarskiy, L. S. Palatnik, Metallofizika Treniya [Metal Physics of Friction] (Moscow: Metallurgy: 1976) (in Russian).
  2. K. C. Antony, J. Metals, 35, No. 2: 52 (1983). Crossref
  3. R. Z. Valiev, Phys. High Pressure Technol., 18: 12 (2008).
  4. M. O. Vasiliev, G. I. Prokopenko, and V. S. Filatova, Usp. Fiz. Met., 5, No. 3: 345 (2004) (in Russian). Crossref
  5. B. N. Mordyuk and G.I. Prokopenko, Mater. Sci. Eng. A, 437: 396 (2006). Crossref
  6. B. N. Mordyuk and G.I. Prokopenko, J. Sound Vibration, 308: 855 (2007). Crossref
  7. G. I. Prokopenko, B. N. Mordyuk, M. O. Vasyliev, and S. M. Voloshko, Fizychni Osnovy Ultrazvukovoho Udarnoho Zmitsnennya Metalevykh Poverkhon [Physical Principles of Ultrasonic Impact Hardening of Metallic Surfaces] (Kyiv: Naukova Dumka: 2017) (in Ukrainian).
  8. M. O. Vasylyev, B. M. Mordyuk, S. I. Sidorenko, S. M. Voloshko, and A. P. Burmak, Metallofiz. Noveishie Tekhnol., 39, No. 1: 49 (2017) (in Ukrainian). Crossref
  9. M. O. Vasyliev, B. M. Mordyuk, S. I. Sidorenko, S. M. Voloshko, A. P. Burmak, Metallofiz. Noveishie Tekhnol., 37, No. 9: 1269 (2015) (in Ukrainian). Crossref
  10. B. N. Mordyuk and G. I. Prokopenko, Handbook of Mechanical Nanostructuring (Ed. M. Aliofkhazraei) (Wiley-VCH: 2015), p. 417. Crossref
  11. C. A. Rodopoulos, A. Th. Kermanidis, E. Statnikov, V. Vityazev, and O. Korolkov, J. Mater. Eng. Perform., 16: 30 (2007). Crossref
  12. V. Efremenko, K. Shimizu, T. Pastukhova, Y. Chabak, M. Brykov, K. Kusumoto, A. Efremenko, Int. J. Mater. Res., 109, No. 2: 147 (2018). Crossref
  13. S. S. Kiparisov, Yu. V. Levinskiy, and A. P. Petrov, Karbid Titana. Poluchenie, Svoystva, Primenenie [Titanium Carbide. Production, Properties, Application] (Moscow: Metallurgy: 1987) (in Russian).
  14. R. P. H. Fleming, Vliyanie Dobavok Karbida Titana (TiC) v Dvoynye, Troynye i Bolee Slozhnye Splavy na Nikelevoy Osnove. In book Zharoprochnye Splavy dlya Gazovykh Turbin (Moscow: Metallurgiya: 1981) (in Russian).
  15. I. Nikitin, B. Scholtes, H. J. Maier, and I. Altenberger, Scr. Mater., 50: 1345 (2004). Crossref
  16. Y. N. Petrov, G. I. Prokopenko, B. N. Mordyuk, M. A. Vasilyev, S. M. Voloshko, V. S. Skorodzievskii, and V. S. Filatova, Mater. Sci. Eng. C, 58: 1024 (2016). Crossref
  17. T. S. Cherepova, G. P. Dmitrieva, and V. K. Nosenko, Metaloznavstvo ta Obrobka Metaliv, 3: 36 (2015) (in Ukrainian).
  18. G. P. Dmitrieva and T. S. Cherepova, Tekhnologicheskie Sistemy, 2: 46 (2017) (in Russian).
  19. H. Toda, K. Minami, K. Koyama, K. Ichitani, M. Kobayashi, K. Uesugi, and Y. Suzuki, Acta Mater., 57: 4391 (2009). Crossref
  20. T. Horiya, T. Yamazaki, K. Takahashi, and H. Fujii, NIPPON Steel Tech. Report, No. 62: 92 (1994).
  21. A. I. Dekhtyar, B. N. Mordyuk, D. G. Savvakin, V. I. Bondarchuk, I. V. Moiseeva, and N. I. Khripta, Mater. Sci. Eng. A., 641: 348 (2015). Crossref
  22. M. A. Vasylyev, B. N. Mordyuk, V. P. Bevz, S. M. Voloshko, and O. B. Mordiuk, Int. J. Surf. Sci. Eng., 14: 1 (2020). Crossref
  23. M. A. Tikhonovsky, A. S. Tortika, I. V. Kolodiy, P. I. Stoev, T. Y. Rudycheva, N. S. Berezhnaya, I. G. Tantsjura, Z. I. Kolupaeva, and I. K. Melnikov, Problems Atomic Sci. Technol., No. 4, 104: 37 (2016) (in Russian).
  24. A. Sanaty-Zadeh, Mater. Sci. Eng. A, 531: 112 (2012). Crossref
  25. Z. Zhang and D. L. Chen, Scripta Mater., 54: 1321 (2006). Crossref
  26. B. N. Mordyuk, M. O. Iefimov, K. E. Grinkevych, A. V. Sameljuk, and M. I. Danylenko, Surf. Coat. Technol., 205: 5278 (2011). Crossref
  27. B. N. Mordyuk, G. I. Prokopenko, Yu. V. Milman, M. O. Iefimov, K. E. Grinkevych, A. V. Sameljuk, and I. V. Tkachenko, Wear, 319: 84 (2014). Crossref
  28. M. A. Vasylyev, B. N. Mordyuk, S. M. Voloshko, V. I. Zakiev, A. P. Burmak, and D. V. Pefti, Metallofiz. Noveishie Tekhnol., 42, No. 3: 381 (2020) (in Ukrainian).