Complex Approach to Protecting Titanium Constructions from Hydrogen Embrittlement

T. V. Pryadko$^{1}$, V. A. Dekhtyarenko$^{1}$, V. I. Bondarchuk$^{1}$, M. A. Vasilyev$^{1}$, S. M. Voloshko$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received: 09.06.2020. Download: PDF

The research is aimed at studying the complex effect of alloying and protective coating on the resistance of titanium to embrittlement in a hydrogen environment. When determining the alloying complex, elements are selected that reduce the rate of interaction of titanium with the hydrogen-containing medium and increase the maximum allowable hydrogen concentrations. The AlN coating applied by helicon-arc ion-plasma sputtering is chosen as the barrier layer. The dynamics of hydrogen accumulation is studied by the Sievers’ method in the mode of heating and isothermal exposure at hydrogen pressure of 0.6 MPa and temperature of (700 $\pm$ 10)°C. As proved, the proposed protective coating has a high resistance in aggressive hydrogen environments at temperatures up to 700°C, significantly reduces the catalytic ability of the surface, and has an order of magnitude lower permeability to hydrogen. Additional doping with aluminium and molybdenum further reduces the amount of absorbed hydrogen by 30%.

Key words: titanium, hydrogen embrittlement, alloying, protective coating, catalytic ability, surface layer permeability.

URL: http://mfint.imp.kiev.ua/en/abstract/v42/i10/1419.html

DOI: https://doi.org/10.15407/mfint.42.10.1419

PACS: 61.72.S-, 68.37.Hk, 68.43.Mn, 68.49.Sf, 81.15.Cd, 81.65.Rv

Citation: T. V. Pryadko, V. A. Dekhtyarenko, V. I. Bondarchuk, M. A. Vasilyev, and S. M. Voloshko, Complex Approach to Protecting Titanium Constructions from Hydrogen Embrittlement, Metallofiz. Noveishie Tekhnol., 42, No. 10: 1419—1429 (2020)


REFERENCES
  1. V. Madina and I. Azkarate, Int. J. Hydrogen Energy, 34: 5976 (2009). Crossref
  2. L. Yan, S. Ramamurthy, J. J. Noel, and D. W. Shoesmith, Electrochimica Acta, 52: 1169 (2006). Crossref
  3. I. P. Chernov, A. M. Lider, and Yu. P. Cherdantsev, Physical Mesomechanics, 3, No. 6: 97 (2000) (in Russian).
  4. B. A. Livanov, A. A. Buhanova, and B. A. Kolachev, Vodorod v Titane [Hydrogen in Titanium] (Moscow: Metalurgizdat: 1962) (in Russian).
  5. S. Bana, Y. Iwayab, H. Konoa, and H. Sato, Dental materials, 22: 1115 (2006). Crossref
  6. B. A. Kolachev, Vodorodnaya Khrupkost' Metallov [Hydrogen Brittleness of Metals] (Moscow: Metalurgizdat: 1985) (in Russian).
  7. Y. Su, L. Wang, L. Luo, X. Jiang, and H. Fu, Int. J. Hydrogen Energy, 34: 8958 (2009). Crossref
  8. A. N. Morozov and A. I. Mikhaylichenko, Uspekhi v Khimii i Khimicheskoy Tekhnologii, 26, No. 11: 30 (2012) (in Russian).
  9. D. Oryshych, V. Dekhtyarenko, T. Pryadko, V. Bondarchuk, and D. Polotskiy, Machines. Technologies. Materials, 13, No. 12: 561 (2019).
  10. A. N. Polyakov, G. G. Imanbekov, and T. D. Manbekova, Nauka i Tekhnika bez Granits, 1: 503 (2009) (in Russian).
  11. M. Tamura and T. Eguchi, J. Vacuum Science Technology A, 33: 0415031 (2015). Crossref
  12. Materials for the Hydrogen Economy (Eds. R. H. Jones and G. J. Thomas) (Boca Raton: Taylor and Francis Group: 2007), p. 181. Crossref
  13. I. P. Chernov, P. A. Beloglazova, E. V. Btrezneva, I. V. Kireeva, N. S. Pushilina, G. E. Remnev, and E. N. Stepanova, Zhurnal Tekhnicheskoy Fiziki, Iss. 7: 95 (2015) (in Russian).
  14. T. V. Pryadko, V. A. Dekhtyarenko, and A. A. Shkola, Physicochemical Mechanics of Materials, 56, No. 1: 76 (2020) (in Ukrainian).
  15. G. A. Merkulova, Metallovedenie i Termicheskaya Obrabotka Tsvetnykh Splavov [Metallurgy and Heat Treatment of Non-Ferrous Alloys] (Krasnoyarsk: 2008) (in Russian).
  16. Ts. Din, Issledovanie Svoystv Splava VT6 s Pokrytiem AlN, Nanesennym Vakuumno-Dugovym Metodom [Investigation of Properties of Alloys VT6, AlN Coated with a Vacuum-Arc Method] (Bachelor's Work) (Tomsk: Tomsk Polytechnic Universuty: 2018) (in Russian).
  17. V. T. Cherepin and M. A. Vasiliev, Vtorichnaya Ionnaya Emissiya Metallov i Splavov [Secondary Ion Emission of Metals and Alloys] (Kyiv: Naukova Dumka: 1975) (in Russian).
  18. G. F. Kobzenko and A. A. Shkola, Zavod. Lab., 56, No. 7: 41 (1990) (in Russian).