High-Temperature Entropy Effects in Tetragonality of the Ordering Interstitial–Substitutional Solution Based on Body-Centred Tetragonal Metal

K. H. Levchuk, T. M. Radchenko, V. A. Tatarenko

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 02.12.2020; final version — 18.01.2021 Download: PDF

To find out the main features of symmetry–energy and structural–entropy aspects of interaction of impurity and solvent, a configuration model for the diffusionless formation of ‘hybrid’ interstitial–substitutional solid solution Me–X, where the interacting non-metal (X) atoms may occupy both octahedral interstices and sites of the b.c.c.(t.) metal (Me) lattice with vacancies, is developed. The discrete (atomic–crystalline) lattice structure, the anisotropy of elasticity, strain-induced (‘size’, etc.) as well as ‘blocking’ effects in the interatomic interactions are taken into account. An example of the simplest alloy isostructural to the nonstoichiometric Fe–N-martensite with a maximal α″-Fe16N2-type long-range order, but with X atoms in the octahedral interstices and sites of the b.c.t.-Me, is considered. An adequate set of the temperature- and concentration-dependent interatomic-interaction-energy parameters in such a solution is used to answer the following two questions. (i) Which are the features of varying the relative concentration of X atoms in the octahedral interstices of the b.c.t.-Me and, thus, its tetragonality degree, when the temperature increases? (ii) How can the equilibrium concentration of residual vacancies at the sites (in a wide range of changing the total content of introduced X atoms) correlate with the concentration of thermally activated vacancies in the impurity-free b.c.c.-Me at a fixed temperature?

Key words: martensite, ‘hybrid’ interstitial–substitutional solid solution, vacancies, strain-induced interaction of point defects, ‘(electro)chemical’ interaction, effect of ‘blocking’ of atoms, configuration entropy, tetragonality.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i01/0001.html

PACS: 61.50.Ks, 61.72.jd, 61.72.Yx, 64.60.Cn, 65.40.gd, 81.30.Hd, 81.30.Kf

Citation: K. H. Levchuk, T. M. Radchenko, and V. A. Tatarenko, High-Temperature Entropy Effects in Tetragonality of the Ordering Interstitial–Substitutional Solution Based on Body-Centred Tetragonal Metal, Metallofiz. Noveishie Tekhnol., 43, No. 1: 1–26 (2021) (in Ukrainian)


REFERENCES
  1. J.-P. Wang, J. Magn. Magn. Mater., 497: 165962 (2020). Crossref
  2. B. Ma, J. Liu, G. Guo, and J.-P. Wang, J. Appl. Phys., 128, Iss. 22, Article number: 223902 (2020). Crossref
  3. T. M. Radchenko, O. S. Gatsenko, V. V. Lizunov, and V. A. Tatarenko, Prog. Phys. Met., 21, No. 4: 580 (2020). Crossref
  4. J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian, and D. Sellmyer, Acta Mat., 158: 118 (2018). Crossref
  5. A. G. Khachaturyan and G. A. Shatalov, Fiz. Tverd. Tela, 12, Iss. 10: 2969 (1970) (in Russian).
  6. A. G. Khachaturyan, Theory of Structural Transformations in Solids (Mineola, NY: Dover Publications: 2008).
  7. V. G. Gavriljuk, V. M. Nadutov, and K. Ullakko, Scr. Metall. Mater., 25, No. 4: 905 (1991). Crossref
  8. V. N. Bugaev and V. A. Tatarenko, Vzaimodeistvie i Raspredelenie Atomov v Splavakh Vnedreniya na Osnove Plotnoupakovannykh Metallov [Interaction and Arrangement of Atoms in Interstitial Solid Solutions Based on Close-Packed Metals] (Kiev: Naukova Dumka: 1989) (in Russian).
  9. M. A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals (Berlin-Heidelberg: Springer: 1996). Crossref
  10. V. A. Tatarenko and C. L. Tsynman, Fizika Realnykh Kristallov (Ed. V. G. Baryakhtar) (Kiev: Naukova Dumka: 1992), p. 244 (in Russian).
  11. T. M. Radchenko, V. A. Tatarenko, and S. M. Bokoch, Metallofiz. Noveishie Tekhnol., 28, No. 12: 1699 (2006).
  12. T. M. Radchenko and V. A. Tatarenko, Defect Diffus. Forum, 273-276: 525 (2008). Crossref
  13. V. A. Tatarenko and T. M. Radchenko, Intermetallics, 11, Nos. 11-12: 1319 (2003). Crossref
  14. V. M. Nadutov, V. A. Tatarenko, C. L. Tsynman, and K. Ullakko, Metallofiz. Noveishie Tekhnol., 16, No. 8: 34 (1994).
  15. V. B. Molodkin, V. A. Tatarenko, and C. L. Tsynman, Metallofizika, 15, No. 9: 26 (1993) (in Russian).
  16. K. H. Jack, Proc. R. Soc. London. Ser. A, 208: 200 (1951). Crossref
  17. T. K. Kim and M. Takahashi, Appl. Phys. Lett., 20, No. 12: 492 (1972). Crossref
  18. L. A. Girifalco, Statistical Physics of Materials (New York: John Wiley and Sons: 1973).
  19. I. M. Melnyk, T. M. Radchenko, and V. A. Tatarenko, Metallofiz. Noveishie Tekhnol., 32, No. 9: 1191 (2010) (in Ukrainian).
  20. V. A. Tatarenko, T. M. Radchenko, and V. M. Nadutov, Metallofiz. Noveishie Tekhnol., 25, No. 10: 1303 (2003) (in Ukrainian).
  21. S. M. Bokoch and V. A. Tatarenko, Solid State Phenom., 138: 303 (2008). Crossref
  22. V. A. Tatarenko, S. M. Bokoch, V. M. Nadutov, T. M. Radchenko, and Y. B. Park, Defect Diffus. Forum, 280: 29 (2008). Crossref
  23. T. M. Radchenko and V. A. Tatarenko, Usp. Fiz. Met., 9, No. 1: 1 (2008) (in Ukrainian). Crossref
  24. V. A. Tatarenko and T. M. Radchenko, Usp. Fiz. Met., 3, No. 2: 111 (2002) (in Ukrainian). Crossref
  25. M. A. Krivoglaz, Diffuse Scattering of X-Rays and Neutrons by Fluctuations (Berlin-Heidelberg: Springer: 1996). Crossref
  26. B. N. Brockhouse, H. E. Abou-Helal, and E. D. Hallman, Solid State Communs., 5, No. 4: 211 (1967). Crossref
  27. R. Kohlhaas, P. Dunner, and N. Schmitz-Pranghe, Z. Angew. Phys., 23, No. 4: 245 (1967).
  28. J. A. Rayne and B. S. Chandrasekhar, Phys. Rev., 122, No. 6: 1714 (1961). Crossref
  29. D. J. Dever, J. Appl. Phys., 43, Iss. 8: 3293 (1972). Crossref
  30. Liu Cheng, A. Böttger, Th. H. de Keijser, and E. J. Mittemeijer, Scr. Metall. Mater., 24, Iss. 3: 509 (1990). Crossref
  31. G. M. Stoica, A. D. Stoica, M. K. Miller, and D. Ma, Nat. Commun., 5, Article number: 5178 (2014). Crossref
  32. Z. S. Basinski, W. Hume-Rothery, and A. L. Sutton, Proc. R. Soc. A, 229: 459 (1955). Crossref
  33. T.-S. Kuan, A. Warshel, and O. Schnepp, J. Chem. Phys., 52, Iss. 6: 3012 (1970). Crossref
  34. W. A. Harrison, Pseudopotentials in the Theory of Metals (New York: W. A. Benjamin: 1966).
  35. W. A. Harrison, Solid State Theory (New York: Dover Publ. Inc.: 2011).
  36. M. S. Blanter and A. G. Khachaturyan, Metall. Mater. Trans. A, 9, No. 6: 753 (1978). Crossref
  37. E. S. Machlin, Acta Metall., 22, Iss. 1: 95 (1974). Crossref
  38. L. Brewer, High-Strength Materials (Ed. V. F. Zackay) (New York: John Wiley and Sons: 1965), ch. 2, p. 12.
  39. L. Brewer, The Cohesive Energies of the Elements (Rep. LBL-3720, Revised May 4, 1977) (Berkeley, CA, USA: Lawrence Berkeley Laboratory: 1977). Crossref
  40. V. G. Weizer and L. A. Girifalco, Phys. Rev., 120, No. 3: 837 (1960). Crossref
  41. R. Yamamoto and M. J. Doyama, J. Phys. F: Met. Phys., 3, No. 8: 1524 (1973). Crossref
  42. A. A. Smirnov, Theory of Vacancies in Metals and Alloys and Its Applications to Substitutional Alloys (Kiev: Naukova Dumka: 1993) (in Russian).
  43. V. N. Bugaev, V. A. Tatarenko, and C. L. Tsinman, Metallofiz. Noveishie Tekhnol., 17, No. 2: 32 (1995) (in Russian).
  44. A. F. Rybalko, Uporyadochenie i Protsessy Perenosa v Splavakh s Neskolkimi Parametrami Poryadka (Thesis of Disser. ... for the Degree of Cand. Phys.-Math. Sci.) (Sverdlovsk, MV i SSO RSFSR: Ural. GU: 1981) (in Russian).
  45. V. A. Klimenko, S. I. Masharov, A. F. Rybalko, N. M. Rybalko, and N. I. Timofeev, Soviet Phys. J., 24, No. 4: 338 (1981). Crossref
  46. V. A. Tatarenko and C. L. Tsinman, Metallofiz. Noveishie Tekhnol., 18, No. 10: 32 (1996) (in Russian).