Mathematical Modelling of Primary Recrystallization Kinetics and Precipitation of Carbonitride Particles in Steels. I. Precipitation

V. V. Kaverinsky, Z. P. Sukhenko

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 12.03.2020; final version - 12.11.2020. Download: PDF

A mathematical physical-based semi-empirical model and a corresponding computer program are developed for describing recrystallization process and carbonitrides particles precipitation in deformed austenite. The model is suitable for alloyed steels of a wide range of compositions. The model allows calculate a thermodynamic equilibrium for excess carbonitride phases with solid solution, the kinetics of their nucleation and growth, and their effect on recovery and recrystallization. A detailed description is given for each aspect of the model and its physical nature. Verification of the simulation results with the experimental data from published sources confirms the sufficient reliability of the proposed computer model for evaluative calculations. The model’s features are demonstrated by an example that simulates influence of Nb content on recristallization, recovery and nucleation, growth and Ostwald ripening of Nb and Ti carbonitride particles. The simulation shows and allows numerically evaluate the effect of slowing down recrystallization and recovery with increasing in Nb content. This indicates a significant effect of dispersed carbonitrides on recrystallization and recovery. The simulation theoretically predicts an intensification of Ti(C, N) particles precipitation and growth with an increase in the Nb concentration. Another result is an increase of dispersion and number of Nb(C, N) particles with an increase in the Nb concentration owing to more rapid transition to the Ostwald ripening stage, which is characterized by much more slowly average particle size growth than from a supersaturated solid solution.

Key words: recrystallization, kinetics, austenite, steel, modelling.

URL: http://mfint.imp.kiev.ua/en/abstract/v43/i01/0027.html

DOI: https://doi.org/10.15407/mfint.43.01.0027

PACS: 07.05.Tp, 61.72.Cc, 64.30.Ef, 64.70.kd, 64.75.-g, 64.75.Op, 81.30.Kf

Citation: V. V. Kaverinsky and Z. P. Sukhenko, Mathematical Modelling of Primary Recrystallization Kinetics and Precipitation of Carbonitride Particles in Steels. I. Precipitation, Metallofiz. Noveishie Tekhnol., 43, No. 1: 27—45 (2021)


REFERENCES
  1. V. M. Golod and K. D. Savel'ev, Vychislitelnaya Termodinamika v Materialovedenii [Computational Thermodynamics in Material Science] (St. Petersburg: Polytechnic University: 2010) (in Russian).
  2. D. F. Sokolov, Razrabotka Modeley Raspada Austenita i Prognozirovaniya Mekhanicheskikh Svoystv pri Kontroliruemoy Prokatke Staley [Development of Austenite Decay Models to Predict the Mechanical Properties of Controlled Rolled Steel] (Thesis of Disser. for Cand. Tech. Sci.) (St. Petersburg: Polytechnic University: 2013) (in Russian).
  3. N. Saunders and A. P. Miodownik, CALPHAD. Calculation of Phase Diagrams (Guildford: Pergamon Press: 2005).
  4. A. I. Trotsan, V. V. Kaverynsky, and I. L. Brodetsky, Metallofiz. Noveishie Tekhnol., 35, No. 7: 919 (2013) (in Russian).
  5. A. I. Trotsan, V. V. Kaverynsky, and I. L. Brodetsky, Metal ta Lyttya Ukrayiny, 22, No. 3: 3 (2014) (in Russian).
  6. A. I. Trotsan, V. V. Kaverynsky, I. L. Brodetsky, B. F. Belov, and A. I. Itsenko, Chernaya Metallurgiya. Byulleten' Nauchno-Tekhnicheskoy i Ekonomicheskoy Informatsii, No. 5: 62 (2014) (in Russian).
  7. V. V. Kaverynsky, A. I. Trotsan, and Z. P. Sukhenko, Metallofiz. Noveishie Tekhnol., 39, No. 8: 1051 (2017) (in Russian). Crossref
  8. V. V. Kaverynsky, Int. J. Information Content and Processing, 6, No. 1: 49 (2019).
  9. S. F. Sokolov, Issledovanie i Modelirovanie Evolyutsii Mikrostruktury i Soprotivleniya Deformatsii Staley pri Goryachey Obrabotke Davleniem [Investigation and Modelling of the Evolution of the Microstructure and Deformation Resistance of Steels during Hot Processing] (Thesis of Disser. for Cand. Tech. Sci.) (St. Petersburg: Polytechnic University: 2013) (in Russian).
  10. H. S. Zurob, Y. Bbrechet, and G. A. Purdy, Acta Mater., 49: 4183 (2001). Crossref
  11. H. Buken and E. Kozeschnik, Metall. Mater. Trans. A, 48: 2812 (2017). Crossref
  12. H. S. Zurob, S. V. Subramanian, G. Purdy, C. R. Hutchison, and Y. Brechet, ISIJ Int., 45, No. 5: 713 (2005). Crossref
  13. A. G. Ponomarenko, Zhurnal Fizicheskoy Khimii, 48, No. 7: 1668 (1974) (in Russian).
  14. V. A. Grigoryan, A. Ya. Stomachin, and A. G. Ponomarenko, Fiziko-Khimicheskie Raschety Elektrostaleplavil'nykh Protsessov [Physicochemical Calculations of Electric Steel Smelting Processes] (Moscow: Metallurgia: 1989) (in Russian).
  15. B. Dutta, E. J. Palmiere, and C. M. Sellars, Acta Mater., 49, No. 5: 785 (2001). Crossref
  16. R. Kampmann and R. Wagner, Decomposition of Alloys: The Early Stages (Oxford: Pergamon Press: 1994).
  17. M. Perez, M. Dumont, and D. Acevedo-Reyes, Acta Mater., 56, No. 9: 2119 (2008). Crossref
  18. H. S. Zurob, C. R. Hutchison, Y. Brechet, and G. Purdy, Acta Mater., 50, No. 12: 3075 (2002). Crossref
  19. K. Xu, B. G. Thomas, and R. Malley, Metal. Mater. Trans. A, 42, No. 2: 524 (2011). Crossref
  20. A. J. De Ardo, Int. Materials Reviews, 48, No. 6: 371 (2003). Crossref
  21. M. Verdier, Y. Brechet, and P. Guyot, Acta Mater., 47, No. 1: 127 (1999). Crossref
  22. S. F. Medina and C. A. Hernandez, Acta Mater., 44, No. 1: 165 (1996). Crossref
  23. S. F. Medina and C. A. Hernandez, Acta Mater., 44, No. 1: 137 (1996). Crossref
  24. S. F. Medina and C. A. Hernandez, Acta Mater., 44, No. 1: 165 (1996). Crossref
  25. V. M. Vorotyntsev and V. D. Skupov, Bazovye Tekhnologii Mikro- i Nano-elektroniki [Basic Technologies of Micro- and Nanoelectronics] (Moscow: Prospect: 2017) (in Russian).
  26. H. S. Medina and J. E. Mancilla, ISIJ Int., 36, No. 8: 1070 (1996). Crossref
  27. H. S. Medina and A. Quispe, ISIJ Int., 41, No. 7: 774 (2001). Crossref
  28. H. S. Medina, J. E. Mancilla, and C. A. Hernandes, ISIJ Int., 34, No. 8: 689 (1994). Crossref
  29. H. S. Medina and A. Quispe, ISIJ Int., 36, No. 10: 1295 (1996). Crossref
  30. H. S. Medina and J. E. Mancilla, ISIJ Int., 36, No. 8: 1063 (1996). Crossref
  31. M. Gomez, H. S. Medina, and A. Quispe, ISIJ Int., 42, No. 4: 423 (2002). Crossref
  32. M. Gomez, L. Rancel, and S. F. Medina, Met. Marer. Int., 15, No. 4: 689 (2009). Crossref