The Role of Active Chemical Elements of Cutting Fluids at the Deformation of Iron by Rolling

V. V. Tykhonovych

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 02.10.2020. Download: PDF

As shown, the use of aqueous emulsions of cutting fluids with antiwear and anti-seize organic additives, which contain active phosphorus, sulphur and chlorine atoms in the molecule, significantly effects on the physical and mechanical properties of the finished product. In certain cases, the cutting fluids can make the near-surface layers of the rolled metal more brittle, in others—lead to an increase in their ductility. As established, an important factor in the influence of the technological environment on the fracture, strength and plasticity characteristics of iron after rolling is a significant change in the chemical composition of grain boundaries and their fragments during severe plastic deformation. An evolution of the chemical composition of the boundary regions of grain boundaries and their fragments during rolling, caused by the saturation of the surface layers of iron with active chemical elements of the cutting fluids and the redistribution of impurity atoms of the initial metal, is investigated. The individual nearest atomic environment of impurity atoms in the boundary regions of grains and their fragments is determined. The effect of active chemical elements of cutting fluids and impurity atoms of starting metals on the electronic structure and the nature of interatomic bonds in the boundary regions of grains and their fragments is studied. The mechanism of their influence on the physical and mechanical properties of the material after rolling in cutting fluids with active chemical elements is investigated.

Key words: plastic deformation, cutting fluids, impurity atoms, segregation, atomic clusters, individual atomic environment, spatial distribution of electron density, interatomic bonds.

URL: http://mfint.imp.kiev.ua/en/abstract/v43/i01/0059.html

DOI: https://doi.org/10.15407/mfint.43.01.0059

PACS: 61.72.-y, 62.20.M-, 68.35.bd, 68.35.Dv, 71.20.Be, 81.20.Hy, 81.40.Np

Citation: V. V. Tykhonovych, The Role of Active Chemical Elements of Cutting Fluids at the Deformation of Iron by Rolling, Metallofiz. Noveishie Tekhnol., 43, No. 1: 59—105 (2021) (in Ukrainian)


REFERENCES
  1. V. K. Belosevich, Trenie, Smazka, Teploobmen pri Kholodnoy Prokatke Listovoy Stali (Moscow: Metallurgiya: 1989) (in Russian).
  2. V. K. Belosevich, N. P. Netesov, and V. I. Meleshko, Emulsii i Smazki pri Kholodnoy Prokatke (Moscow: Metallurgiya: 1976) (in Russian).
  3. M. M. Gorenshteyn, Trenie i Tekhnologicheskie Smazki pri Prokatke (Kyiv: Tekhnika: 1979) (in Russian).
  4. A. P. Grudev, Yu. V. Zil'berg, and V. T. Tilik, Trenie i Smazki pri Obrabotke Metallov Davleniem (Moscow: Metallurgiya: 1982) (in Russian).
  5. A. P. Grudev and V. T. Tilik, Tekhnologicheskie Smazki v Prokatnom Proizvodstve (Moscow: Metallurgiya: 1982) (in Russian).
  6. Yu. M. Vinogradov, Trenie i Iznos Modifitsirovannykh Metallov (Moscow: Nauka: 1972) (in Russian).
  7. A. A. Gureev, P. P. Zaskal'ko, I. E. Vinogradova, N. M. Mumindzhanov, and V. Kh. Korsunskiy, Khimiya i Tekhnologiya Topliv i Masel, No. 7: 61 (1980) (in Russian).
  8. R. M. Maivievskiy, D. K. Shul'tse, and I. A. Bunyakovskiy, Issledovanie Smazochnykh Materialov pri Trenii. O Svyazi Mezhdu Termicheskoy Stabilnostyu Khimicheski Aktivnykh Prisadok k Smazochnym Maslam i Ikh Tribotekhnicheskimi Svoystvami pri Trenii (Moscow: Nauka: 1981) (in Russian).
  9. L. M. Roev, L. M. Artyukhovskaya, V. Ya. Sklyar, L. A. Red'ko, and R. A. Svishchuk, Ukrainskiy Khimicheskiy Zhurnal, 44, No. 12: 1290 (1978) (in Russian).
  10. V. V. Tykhonovych, Metallofiz. Noveishie Tekhnol., 37, No. 6: 817 (2015) (in Russian). Crossref
  11. S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, Rentgenograficheskiy i Elektronno-Opticheskiy Analiz (Moscow: Metallurgiya: 1970) (in Russian).
  12. N. I. Komyak and Yu. G.Myasnikov, Rentgenovskie Metody i Apparatura dlya Opredeleniya Napryazheniy (Leningrad: Nauka: 1972) (in Russian).
  13. A. I. Kovalyov and G. V. Scherbedinskiy, Sovremennye Metody Issledovaniya Poverkhnosti Metallov i Splavov (Moscow: Metallurgiya: 1989) (in Russian).
  14. A. I. Kovalyov, V. P. Mishina, and G. V. Scherbedinskiy, Metallofizika, 9, No. 3: 112 (1987) (in Russian).
  15. D. Singh, Plane Waves, Psevdopotentials and LAPW Method (Kluwer Academic: 1994). Crossref
  16. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Let., 77: 3865 (1996). Crossref
  17. P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, and J. Luits, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculation Crystal Properties (Austria: Techn. Universitat Wien: 2001). ISBN 3-9501031-1-2
  18. V. V. Gorskiy, Yu. Ya. Meshkov, V. P. Temnenko, V. V. Tykhonovych, B. S. Shapoval, A. V. Shevchenko, and L. M. Sheludchenko, Metallofizika, 12, No. 2: 57 (1990) (in Russian).
  19. Yu. Ya. Meshkov and G. A. Pakharenko, Struktura Metalla i Khrupkost Stalnykh Izdeliy (Kyiv: Naukova Dumka: 1985) (in Russian).
  20. K. Masuda-Jindo, phys. status solidi (b), 134: 545 (1986). Crossref
  21. A. V. Panin, V. E. Panin, I. P. Chernov, Yu. I. Pochivalov, M. S. Kazachenok, A. A. Son, R. Z. Valiev, and V. I. Kopylov, Fizicheskaya Mekhanika, 4, No. 6: 87 (2001) (in Russian).
  22. A. V. Panin, V. A. Klemenov, Yu. I. Pochivalov, and A. A. Son, Fizicheskaya Mekhanika, 4, No. 4: 85 (2001) (in Russian).
  23. A. V. Panin, V. A. Klemenov, N. L. Abramovskaya, and A. A. Son, Fizicheskaya Mekhanika, 3, No. 1: 83 (2000) (in Russian).
  24. E. T. Bilyy, Novi Materialy i Tekhnologii v Metalurgii ta Mashinobuduvanni, No. 1: 77 (2008) (in Ukrainian).
  25. A. A. Aliev, V. P. Bulgakov, and B. S. Prikhod'ko, Vestnik Astrakhanskogo Gosudarstvennogo Tekhnicheskogo Universiteta, No. 1: 8 (2004) (in Russian).
  26. S. A. Kotrechko, Yu. Ya. Meshkov, K. P. Ryaboshapka, and N. N. Stetsenko, Metallofiz. Noveishie Tekhnol., 22, No. 5: 70 (2000) (in Russian).
  27. S. A. Kotrechko, V. N. Grishchenko, and S. A. Mamedov, Metallofiz. Noveishie Tekhnol., 37, No. 5: 649 (2015) (in Russian). Crossref
  28. S. A. Kotrechko, Yu. Ya. Meshkov, G. S. Mettus, and D. I. Nikonenko, Problemy Prochnosti, No. 1: 72 (2000) (in Russian).
  29. S. A. Kotrechko, Metallofiz. Noveishie Tekhnol., 23, No. 1: 103 (2001) (in Russian).
  30. E. V. Kozlov, N. A. Koneva, and N. A. Popova, Pisma o Materialakh, No. 3: 113 (2013) (in Russian).
  31. V. V. Gorskiy, A. N. Gripachevskiy, V. V. Tykhonovych, and V. N. Uvarov, Usp. Fiz. Met., 4, No. 4: 271 (2003) (in Russian). Crossref
  32. V. V. Tykhonovych, Metallofiz. Noveishie Tekhnol., 40, No. 8: 1005 (2018) (in Russian). Crossref
  33. D. Briggs and M. P. Sikh, Analiz Poverkhnosti Metodami Ozhe- i Rentgenovskoy Fotoelektronnoy Spektroskopii (Moscow: Mir: 1987) (in Russian).
  34. R. L. Blake, R. E. Nessevick, T. Zoltai, and L. W. Finger, American Mineralogist, 51: 123 (1966).
  35. V. V. Tykhonovych and V. N. Uvarov, Usp. Fiz. Met., 12, No. 2: 209 (2011) (in Russian). Crossref
  36. V. V. Tykhonovych, Metallofiz. Noveishie Tekhnol., 33, No. 12: 1671 (2011) (in Russian).
  37. R. S. Knox and A. Gold, Symmetry in the Solid State (New York: W. A. Benjamin Inc.: 1964).