Magnetoresistive and Magnetic Properties of Three-Layer Nanocrystalline Permalloy/Ag/Permalloy Films

I. O. Shpetnyi$^{1}$, Yu. O. Shkurdoda$^{1}$, D. I. Saltykov$^{1}$, V. I. Grebinaha$^{2}$, S. I. Vorobiov$^{1,3}$

$^{1}$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{3}$Pavol Jozef Šafárik University in Košice, 2 Šrobárova Str., 04180 Košice, Slovak Republic

Received: 14.04.2020; final version - 08.12.2020. Download: PDF

The structural-phase state, magnetoresistive and magnetic properties of three-layer film systems based on permalloy (Py) and silver, obtained by the method of alternate condensation, are studied in this work. For as-deposited films and annealed at 600 K ones, the phase composition corresponds to f.c.c.-Ag and f.c.c.-Ni(Fe) with a lattice parameter of 0.4085–0.4095 nm and 0.359–0.361 nm, respectively. The phase state of the films annealed at the 800 K corresponds to f.c.c.-Ag and f.c.c.-Ni$_3$Fe. Studies of magnetoresistance show that spin-dependent electron scattering is realized in as-deposited systems with a silver layer (3–10 nm). After annealing three-layer films at 600 K, the transition from isotropic to the anisotropic character of the magnetoresistance is observed. The magnetic properties of films do not significantly depend on the thickness of the non-magnetic layer of silver. Annealing up to 800 K leads to an abrupt increase in the coercive force, which is caused by the phase transition of f.c.c.-Ni(Fe) → f.c.c.-Ni$_3$Fe and disruption of the structural continuity of the non-magnetic layer.

Key words: structural-phase state, giant magnetoresistance, anisotropic magnetoresistance, magnetoresistive properties, coercive force, film systems.

URL: http://mfint.imp.kiev.ua/en/abstract/v43/i01/0129.html

DOI: https://doi.org/10.15407/mfint.43.01.0129

PACS: 68.55.Nq, 73.50.-h, 75.30.Gw, 75.47.De, 75.47.Np, 75.60.Ej, 75.70.C

Citation: I. O. Shpetnyi, Yu. O. Shkurdoda, D. I. Saltykov, V. I. Grebinaha, and S. I. Vorobiov, Magnetoresistive and Magnetic Properties of Three-Layer Nanocrystalline Permalloy/Ag/Permalloy Films, Metallofiz. Noveishie Tekhnol., 43, No. 1: 129—142 (2021) (in Ukrainian)


REFERENCES
  1. I. Ennen, D. Kappe, T. Rempel, C. Glenske, and A. Hütten, Sensors, 16: 904 (2016). https://doi.org/10.3390/s16060904 Crossref
  2. L. Jogschies, D. Klaas, R. Kruppe, J. Rittinger, P. Taptimthong, A. Wienecke, L. Rissing, and M. C. Wurz, Sensors, 15: 28665 (2015). Crossref
  3. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Greuzet, A. Fiederich, and J. Chazelas, Phys. Rev. Lett., 61: 2472 (1988). Crossref
  4. G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B, 39: 4828 (1989). Crossref
  5. K. Sato and E. Saitoh, Spintronics for Next Generation Innovative Devices (Wiley: 2015). Crossref
  6. W. Wang, Y. Wang, L. Tu, Y. Feng, T. Klein, and J. P. Wang, Sci. Rep., 4: 5716 (2014). Crossref
  7. D. Peng, J. Wang, L. Wang, X. Liu, Z. Wang, and Y. Chen, Sci. China-Phys. Mech. Astron., 56: 15 (2013). Crossref
  8. Ch. P. Pul and F. J. Oue'ns, Mir Materialov i Tekhnologiy. Nanotekhnologii (Moscow: Tekhnosfera: 2006) (in Russian).
  9. M. Z. Iqbal, G. Hussain, S. Siddique, and M. W. Iqbal, J. Magn. Magn. Mater., 432: 135 (2017). Crossref
  10. V. S. Luong, A. T. Nguyen, and A. T. Nguyen, Measurement, 115: 173 (2018). Crossref
  11. K. Zhao, Y. Xing, J. Han, J. Feng, W. Shi, B. Zhang, and Z. Zeng, J. Magn. Magn. Mater., 432: 10 (2017). Crossref
  12. M. Tamisari, F. Spizzo, M. Sacerdoti, G. Battaglin, and F. Ronconi, J. Nanoparticle Res., 13: 5203 (2011). Crossref
  13. J. Garcia-Torres, E. Vallés, and E. Gómez, Mater. Lett., 65: 1865 (2011). Crossref
  14. D. Kumar, S. Chaudhary, and D. K. Pandya, J. Magn. Magn. Mater., 394: 245 (2015). Crossref
  15. I. O. Shpetnyi, S. I. Vorobiov, D. M. Kondrakhova, M. S. Shevchenko, L. V. Duplik, L. V. Panina, V. I. Grebinaha, Yu. I. Gorobets, L. Satrapinskyy, and T. Luciński, Vacuum, 176: 109329 (2020). Crossref
  16. I. O. Shpetnyi, D. M. Kondrakhova, S. I. Vorobiov, B. Scheibe, V. I. Grebinaha, D. O. Derecha, Y. I. Gorobets, and I. Y. Protsenko, J. Magn. Magn. Mater., 474: 624 (2019). Crossref
  17. M. Marszalek, O. Bolling, J. Jaworski, M. Kac, R. Kruk, V. Tokman, and B. Sulkio-Cleff, phys. status solidi (c), 12: 3239 (2004). Crossref
  18. L. V. Odnodvorets, I. Yu. Protsenko, O. P. Tkach, Yu. M. Shabelnyk, and N. I. Shumakova, J. Nano- Electron. Phys., 9, No. 2: 02021 (2017). Crossref
  19. A. N. Pohorilyi, A. F. Kravets, E. V. Shypil, D. Y. Pod'yalovsky, A. Ya. Vovk, Chang Sik Kim, M. V. Prudnikova, and H. R. Khan, Thin Solid Films, 423: 218 (2003). Crossref
  20. D. Pod'yalovskii, A. Pohorilyi, B. Ivanov, A. Kravets, and C. S. Kim, J. Magn. Magn. Mater., 196-197: 131 (1999). Crossref
  21. B. Dieny, S. R. Teixeira, B. Rodmacq, C. Cowache, S. Auffret, O. Redon, and J. Pierre, J. Magn. Magn. Mater., 130: 197 (1994). Crossref
  22. L. Vieux-Rochaz, R. Cuchet, and M. H. Vaudaine, Sens. Actuators, A, 81: 53 (2000). Crossref
  23. I. Yu. Protsenko, V. V. Tokman, A. M. Chornous, and I. O. Shpetnyy, Metallofiz. Noveishie Tekhnol., 25, No. 3: 319 (2003) (in Ukrainian).
  24. I. Shpetnyi, A. S. Kovalenko, M. Klimenkov, I. Yu. Protsenko, S. V. Chernov, A. Nepijko, H. J. Elmers, and G. Schönhense, J. Magn. Magn. Mater., 373: 231 (2015). Crossref
  25. T. B. Massalsky, J. L. Murray, L. H. Bennett, and H. Baker, Binary Alloy Phase Diagrams (Metals Park, Ohio: American Society for Metals: 1986).
  26. T. M. Grychanovs'ka, I. Yu. Protsenko, A. M. Chornous, and I. O. Shpetny, Metallofiz. Noveishie Tekhnol., 28, No. 2: 267 (2006) (in Ukrainian).
  27. D. I. Saltykov, Yu. O. Shkurdoda, and I. Yu. Protsenko, J. Nano- Electron. Phys., 10, No. 3: 03024-1 (2018). Crossref
  28. S. I. Vorobiov, Ia. M. Lytvynenko, I. O. Shpetnyi, O. V. Shutylieva, and A. M. Chornous, Metallofiz. Noveishie Tekhnol., 37, No. 8: 1049 (2015) (in Ukrainian). Crossref
  29. D. I. Saltykov, Yu. O. Shkurdoda, and I. Yu. Protsenko, J. Nano- Electron. Phys., 10, No. 4: 04031-1 (2018). Crossref
  30. A. G. Basov, S. I. Vorobiov, Yu. O. Shkurdoda, and L. V. Dekhtyaruk, J. Nano- Electron. Phys., 2, No. 3: 78 (2010).
  31. S. I. Vorobiov, I. V. Cheshko, A. M. Chornous, H. Shirzadfar, and O. V. Shutylieva, J. Nano- Electron. Phys., 6, No. 2: 02022-1 (2014).
  32. G. S. Kandaurova, Sorosovskiy Obrazovatelnyy Zhurnal, 1: 100 (1997) (in Russian).