Loading [MathJax]/jax/output/HTML-CSS/jax.js

Magnetic and Photocatalytic Properties of Nanodispersed Ferrites CoxNiyZn1xyFe2O4

L. A. Frolova1, O. V. Khmelenko2, O. S. Kovrov3

1SHEI ‘Ukrainian State University of Chemical Technology’, 8 Gagarin Ave., UA-49005 Dnipro, Ukraine
2Oles Honchar Dnipro National University, 72 Gagarin Ave., UA-49010 Dnipro, Ukraine
3National Technical University ‘Dnipro Polytechnic’, 19 Dmytro Yavornytsky Ave., UA-49005 Dnipro, Ukraine

Received: 18.07.2020; final version - 07.12.2020. Download: PDF

The dependence of the magnetic and photocatalytic properties of the ferrites of CoxNiyZn1xyFe2O4 composition (where 0 < x < 1 and 0 < y < 1) is considered. The ferrites are synthesized by the plasma method in the form of nanoparticles. A study of the nanoferrites properties of is performed using X-ray phase analysis, vibration magnetometry, and spectroscopy. Photocatalytic properties in the decomposition reaction of methylene blue are determined by UV-spectrograms. Mathematical equations of the dependences of the response functions on the composition are obtained using the simplex method. As found, the saturation magnetization decreases for ferrites of Ni1xZnxFe2O4 and Co1xFe2O4 compositions with increasing zinc cation content. For a number of Ni1xCoxFe2O4 ferrites, increased magnetic characteristics are observed. The study of catalytic activity against the decomposition reaction of methylene blue shows high photocatalytic properties for double and triple ferrites. A correlation between the photocatalytic activity and the band gap energy is determined.

Key words: ferrites, plasma method, simplex method, saturation magnetization, photocatalysis, coercive force.

URL: http://mfint.imp.kiev.ua/en/abstract/v43/i02/0159.html

DOI: https://doi.org/10.15407/mfint.43.02.0159

PACS: 52.77.Dq, 61.05.cp, 61.46.-w, 61.66.Fn, 75.50.Gg, 75.60.Ej, 81.20.Fw

Citation: L. A. Frolova, O. V. Khmelenko, and O. S. Kovrov, Magnetic and Photocatalytic Properties of Nanodispersed Ferrites CoxNiyZn1xyFe2O4, Metallofiz. Noveishie Tekhnol., 43, No. 2: 159—171 (2021) (in Ukrainian)


REFERENCES
  1. L. Živanov, M. Damnjanović, N. Blaž, A. Marić, M. Kisić, and G. Radosavljević, Magnetic, Ferroelectric, and Multiferroic Metal Oxides, 2018: 387 (2018). Crossref
  2. M. Kaur and N. Kaur, and Vibha, Ferrites: Synthesis and Applications in for Environmental Remediation (Eds. Virender K. Sharma, Ruey-an Doong, Hyunook Kim, Rajender S. Varma, and Dionysios D. Dionysiou) (Texas: Ameri-can Chemical Society: 2016), ch. 4, p. 113. Crossref
  3. G. Mamba and M. Ajay, Catalysts, 6: 79 (2016). Crossref
  4. S. J. Olusegun, E. T. F. Freitas, L. R. S. Lara, H. O. Stumpf, and N. D. S. Mo-hallem, Ceram. Int., 45, No. 7: 8734 (2019). Crossref
  5. F. Dehghani, H.Saeedeh, and A. Shibani, J. Industrial and Engineering Chem-istry, 48: 36 (2017). Crossref
  6. S. E. Shirsath, D. Wang, S. S. Jadhav, M. L. Mane, and S. Li, Handbook of Sol-Gel Science and Technology (Eds. Lisa Klein, Mario Aparicio, and Andrei Jitianu) (Cham: Springer: 2018), p. 695. Crossref
  7. I. Zalite, G. Heidemane, J. Grabis, and M. Maiorov, Powder Technology (Ed. Alberto Adriano Cavalheiro) (London: Intech Open Limited: 2018), ch. 6, p. 97. Crossref
  8. C. Barathiraja, A. Manikandan, A. U. Mohideen, S. Jayasree, and S. A. Antony, J. Supercond. Nov. Magn., 29, No. 2: 477 (2016). Crossref
  9. N. Jahan, F.-U.-Z. Chowdhury, and A. K. M. Zakaria, Mater. Science-Poland, 34, No. 1: 185 (2016). Crossref
  10. X. Li, R. Sun, B. Luo, A. Zhang, A. Xia, and C. Jin, J. Mater. Sci.: Mater. Elec-tron., 28: 12268 (2017). Crossref
  11. C. Liu, B. Zou, A. J. Rondinone, and Z. J. Zhang, J. Phys. Chem. B, 104: 1141 (2000). Crossref
  12. G. R. Patta, R. Kumar, B. V. Ragavaiah, and N. Veeraiah, Appl. Phys. A, 126: 64 (2020). Crossref
  13. L. Frolova, A. Derimova, and T. Butyrina, Acta Phys. Polonica A, 133, No. 4: 1021 (2018). Crossref
  14. P. A. Vinosha, B. Xavier, S. Krishnan, and S. J. Das, J. Nanosci. Nanotechnol., 18, No. 8: 5354 (2018). Crossref
  15. R. Sharma and S. Singhal, Clean-Soil Air Water, 46, No. 1: 1700605 (2018). Crossref
  16. M. T. Jamil, J. Ahmad, S. H. Bukhari, T. Sultan, M. Y. Akhter, H. Ahmad, and G. Murtaza, J. Ovonic Res., 13, No. 1: 45 (2017).
  17. R. Sharma, S. Bansal, and S. Singhal, J. RSC Adv., 5, No. 8: 6006 (2015). Crossref
  18. M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, and L. Guo, Nanoscale, 7, No. 19: 8920 (2015). Crossref
  19. V. Anto Feradrick Samson, S. Bharathi Bernadsha, M. Mahendiran, K. Leo Lawrence, J. Madhavan, M. Victor Antony Raj, and S. Prathap, J. Mater. Sci.: Mater. Electron., 31: 6574 (2020). Crossref
  20. Zhigang Jia, Daping Ren, Yongcheng Liang, and Rongsun Zhu, Mater. Lett., 65, No. 19-20: 3116 (2011). Crossref
  21. G. Mathubala, A. Manikandan, S. Arul Antony, and P. Ramar, J. Mol. Struct., 1113: 79 (2016). Crossref
  22. S. Asiri, M. Sertkol, S. Guner, H. Gungunes, K. M. Batoo, T. A. Saleh, H. Sozeri, M. A. Almessiere, A. Manikandan, and A. Baykal, Ceram. Int., 44, No. 5: 5751 (2018). Crossref
  23. M. I. A. Abdel Maksoud, G. S. El-Sayyad, A. H. Ashour, A. I. El-Batal, M. A. Elsayed, M. Gobara, A. M. El-Khawaga, E. K. Abdel-Khalek, and M. M. El-Okr, Microbial Pathogenesis, 127: 144 (2019). Crossref
  24. M. Sun, X. Han, and Sh. Chen, Mater. Sci. Semiconductor Process., 91: 367 (2019). Crossref
  25. N. K. Gupta, Y. Ghaffari, S. Kim, J. Bae, K. S. Kim, and Md. Saifuddin, Sci. Rep., 10: 4942 (2020). Crossref
  26. A. Lassoued and J. F. Li, Solid State Sci., 104: 106199 (2020). Crossref
  27. R. Hosseini Akbarnejad, V. Daadmehr, A. T. Rezakhani, F. Shahbaz Tehrani, F. Aghakhani, and S. Gholipour, J. Supercond. Nov. Magn., 26: 429 (2013). Crossref
  28. K. K. Kefeni and B. B. Mamba, Sustainable Materials and Technologies, 23: e00140 (2020). Crossref
  29. L. Frolova, A. Pivovarov, and E. Tsepich, Nanophysics, Nanophotonics, Surface Studies, and Applications (Eds. O. Fesenko and L. Yatsenko) (Springer: 2016), p. 213. Crossref
  30. R. R. López and R. Gómez, J. Sol-Gel Sci. Tech., 61, No. 1: 1 (2012). Crossref
  31. L. A. Frolova and M. P. Derhachov, Nanoscale Res. Lett., 12, No. 1: 505 (2017). Crossref