Магнитные и фотокаталитические свойства нанодисперсных ферритов Co$_x$Ni$_y$Zn$_{1-x-y}$Fe$_2$O$_4$

Л. А. Фролова$^{1}$, О. В. Хмеленко$^{2}$, А. С. Ковров$^{3}$

$^{1}$ГВУЗ «Украинский государственный химико-технологический университет», просп. Гагарина, 8, 49005 Днепр, Украина
$^{2}$Днепровский национальный университет имени Олеся Гончара, просп. Гагарина, 72, 49010 Днепр, Украина
$^{3}$Национальный технический университет «Днепровская политехника», просп. Дмитрия Яворницкого, 19, 49005 Днепр, Украина

Получена: 18.07.2020; окончательный вариант - 07.12.2020. Скачать: PDF

В работе рассмотрены зависимости магнитных и фотокаталитических свойств ферритов Co$_x$Ni$_y$Zn$_{1-x-y}$Fe$_2$O$_4$ (0 < $x$ < 1, 0 < $y$ < 1) от их состава. Ферриты синтезировали плазменным методом в виде наночастиц. Исследование свойств наноферритов проводили с помощью рентгенофазового анализа, вибрационной магнитометрии, спектроскопии. Фотокаталитические свойства в реакции разложения метиленового синего определяли по УФ-спектрограммам. Математические уравнения зависимостей функций отклика от состава получены с помощью симплексного метода. Установлено, что намагниченность насыщения снижается для ферритов составов Ni$_{1-x}$Zn$_x$Fe$_2$O$_4$ и Co$_{1-x}$Fe$_2$O$_4$ с увеличением содержания катионов цинка. Для всего ряда Ni$_{1-x}$Co$_x$Fe$_2$O$_4$ ферритов наблюдаются повышенные магнитные характеристики. Исследование каталитической активности по отношению к реакции разложения метиленового синего показало, что двойные и тройные ферриты характеризуются высокими фотокаталитическими свойствами. Наблюдается корреляция между фотокаталитической активностью и энергией запрещённой зоны.

Ключевые слова: ферриты, плазменный метод, симплексный метод, намагниченность насыщения, фотокатализ, коэрцитивная сила.

URL: http://mfint.imp.kiev.ua/ru/abstract/v43/i02/0159.html

PACS: 52.77.Dq, 61.05.cp, 61.46.-w, 61.66.Fn, 75.50.Gg, 75.60.Ej, 81.20.Fw


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. L. Živanov, M. Damnjanović, N. Blaž, A. Marić, M. Kisić, and G. Radosavljević, Magnetic, Ferroelectric, and Multiferroic Metal Oxides, 2018: 387 (2018). Crossref
  2. M. Kaur and N. Kaur, and Vibha, Ferrites: Synthesis and Applications in for Environmental Remediation (Eds. Virender K. Sharma, Ruey-an Doong, Hyunook Kim, Rajender S. Varma, and Dionysios D. Dionysiou) (Texas: American Chemical Society: 2016), ch. 4, p. 113. Crossref
  3. G. Mamba and M. Ajay, Catalysts, 6: 79 (2016). Crossref
  4. S. J. Olusegun, E. T. F. Freitas, L. R. S. Lara, H. O. Stumpf, and N. D. S. Mohallem, Ceram. Int., 45, No. 7: 8734 (2019). Crossref
  5. F. Dehghani, H.Saeedeh, and A. Shibani, J. Industrial and Engineering Chemistry, 48: 36 (2017). Crossref
  6. S. E. Shirsath, D. Wang, S. S. Jadhav, M. L. Mane, and S. Li, Handbook of Sol-Gel Science and Technology (Eds. Lisa Klein, Mario Aparicio, and Andrei Jitianu) (Cham: Springer: 2018), p. 695. Crossref
  7. I. Zalite, G. Heidemane, J. Grabis, and M. Maiorov, Powder Technology (Ed. Alberto Adriano Cavalheiro) (London: Intech Open Limited: 2018), ch. 6, p. 97. Crossref
  8. C. Barathiraja, A. Manikandan, A. U. Mohideen, S. Jayasree, and S. A. Antony, J. Supercond. Nov. Magn., 29, No. 2: 477 (2016). Crossref
  9. N. Jahan, F.-U.-Z. Chowdhury, and A. K. M. Zakaria, Mater. Science-Poland, 34, No. 1: 185 (2016). Crossref
  10. X. Li, R. Sun, B. Luo, A. Zhang, A. Xia, and C. Jin, J. Mater. Sci.: Mater. Electron., 28: 12268 (2017). Crossref
  11. C. Liu, B. Zou, A. J. Rondinone, and Z. J. Zhang, J. Phys. Chem. B, 104: 1141 (2000). Crossref
  12. G. R. Patta, R. Kumar, B. V. Ragavaiah, and N. Veeraiah, Appl. Phys. A, 126: 64 (2020). Crossref
  13. L. Frolova, A. Derimova, and T. Butyrina, Acta Phys. Polonica A, 133, No. 4: 1021 (2018). Crossref
  14. P. A. Vinosha, B. Xavier, S. Krishnan, and S. J. Das, J. Nanosci. Nanotechnol., 18, No. 8: 5354 (2018). Crossref
  15. R. Sharma and S. Singhal, Clean-Soil Air Water, 46, No. 1: 1700605 (2018). Crossref
  16. M. T. Jamil, J. Ahmad, S. H. Bukhari, T. Sultan, M. Y. Akhter, H. Ahmad, and G. Murtaza, J. Ovonic Res., 13, No. 1: 45 (2017).
  17. R. Sharma, S. Bansal, and S. Singhal, J. RSC Adv., 5, No. 8: 6006 (2015). Crossref
  18. M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, and L. Guo, Nanoscale, 7, No. 19: 8920 (2015). Crossref
  19. V. Anto Feradrick Samson, S. Bharathi Bernadsha, M. Mahendiran, K. Leo Lawrence, J. Madhavan, M. Victor Antony Raj, and S. Prathap, J. Mater. Sci.: Mater. Electron., 31: 6574 (2020). Crossref
  20. Zhigang Jia, Daping Ren, Yongcheng Liang, and Rongsun Zhu, Mater. Lett., 65, No. 19–20: 3116 (2011). Crossref
  21. G. Mathubala, A. Manikandan, S. Arul Antony, and P. Ramar, J. Mol. Struct., 1113: 79 (2016). Crossref
  22. S. Asiri, M. Sertkol, S. Guner, H. Gungunes, K. M. Batoo, T. A. Saleh, H. Sozeri, M. A. Almessiere, A. Manikandan, and A. Baykal, Ceram. Int., 44, No. 5: 5751 (2018). Crossref
  23. M. I. A. Abdel Maksoud, G. S. El-Sayyad, A. H. Ashour, A. I. El-Batal, M. A. Elsayed, M. Gobara, A. M. El-Khawaga, E. K. Abdel-Khalek, and M. M. El-Okr, Microbial Pathogenesis, 127: 144 (2019). Crossref
  24. M. Sun, X. Han, and Sh. Chen, Mater. Sci. Semiconductor Process., 91: 367 (2019). Crossref
  25. N. K. Gupta, Y. Ghaffari, S. Kim, J. Bae, K. S. Kim, and Md. Saifuddin, Sci. Rep., 10: 4942 (2020). Crossref
  26. A. Lassoued and J. F. Li, Solid State Sci., 104: 106199 (2020). Crossref
  27. R. Hosseini Akbarnejad, V. Daadmehr, A. T. Rezakhani, F. Shahbaz Tehrani, F. Aghakhani, and S. Gholipour, J. Supercond. Nov. Magn., 26: 429 (2013). Crossref
  28. K. K. Kefeni and B. B. Mamba, Sustainable Materials and Technologies, 23: e00140 (2020). Crossref
  29. L. Frolova, A. Pivovarov, and E. Tsepich, Nanophysics, Nanophotonics, Surface Studies, and Applications (Eds. O. Fesenko and L. Yatsenko) (Springer: 2016), p. 213. Crossref
  30. R. R. López and R. Gómez, J. Sol-Gel Sci. Tech., 61, No. 1: 1 (2012). Crossref
  31. L. A. Frolova and M. P. Derhachov, Nanoscale Res. Lett., 12, No. 1: 505 (2017). Crossref