Effect of Copper on Formation of Wear-Resistant Ultradispersed and Nanostructured Surface Layers of Friction of Chromium Steels

V. V. Tykhonovych$^{1}$, O. M. Grуpachevskуi$^{1}$, V. G. Novytskyi$^{2}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Physico-Technological Institute of Metals and Alloys, NAS of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 02.03.2021. Download: PDF

The effect of introducing structurally free copper inclusions ($\varepsilon$-phase) into X120Cr15 steel on the mechanism of formation of wear-resistant ultradispersed coatings on friction surfaces is studied. Steel X120Cr15 is alloyed with 10% wt. Cu (X120Cr15Cu10). The formation of wear-resistant ultradispersed coatings on the friction surfaces leads to the transition of the friction pair steel X120Cr15–steel X20Cr13 into a stationary operating mode with the minimum friction coefficient and wear. The study shows that these coatings consist of separate layers. These layers are the result of the layering of metal microprotrusions on the friction surface. These microprotrusions are formed during the breaking-in of friction units as a result of the local metal destruction and its transfer between bodies. As established, the alloying of X120Cr15 steel with 10% wt. Cu does not change the structure and phase composition of the initial alloy, but additionally, $\varepsilon$-Cu phase inclusions appear. Depending on the inclusion’s size, $\varepsilon$-Cu phases have different origins and are formed from a liquid melt, austenite, and ferrite. The mechanism of influence of additional alloying of steel X120Cr15 with copper on the increase of the alloy’s hardness and elasticity is studied. As established, the effect of copper on the hardness and elasticity of X120Cr15Cu10 steel increases during plastic deformation of the alloy due to the destruction of the network of the eutectic component, grinding, and partial dissolution of inclusions of the $\varepsilon$-Cu phase. The study shows that additional alloying of X120Cr15 steel with copper reduces the difference between the mechanical properties of the bodies forming friction units. Therefore, in the working pair of steel X120Cr15–steel X20Cr13, the friction layers are mainly formed from the metal of steel X120Cr15, and in the working pair of steel X120Cr15Cu10–steel X20Cr13, the contribution of both bodies to the formation of friction layers does not differ much. It leads to more uniform wear of the friction pair bodies and a drop in its total wear.

Key words: sliding friction, wear resistance, nanostructured material, ultradispersed structure, inclusion of $\varepsilon$-Cu phase, surface layers of friction, mass transfer.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i07/0853.html

DOI: https://doi.org/10.15407/mfint.43.07.0853

PACS: 06.60.Vz, 62.20.Qp, 62.25.-g, 68.35.Ct, 81.07.Bc, 81.16.Rf, 81.40.Pq

Citation: V. V. Tykhonovych, O. M. Grуpachevskуi, and V. G. Novytskyi, Effect of Copper on Formation of Wear-Resistant Ultradispersed and Nanostructured Surface Layers of Friction of Chromium Steels, Metallofiz. Noveishie Tekhnol., 43, No. 7: 853—886 (2021) (in Ukrainian)


REFERENCES
  1. T. S. Skoblo and N. M. Mozharova, Liteynoe Proizvodstvo, 4, No. 1: 2 (2008) (in Russian).
  2. Yu. S. Bobro, M. F. Baranov, and O. I. Kovalenko, Fiziko-Khimicheskaya Mekhanika Materialov, 4, No. 1: 112 (1975) (in Russian).
  3. V. A. Ignatov, V. K. Solenyy, V. L. Zhuk, and A. I. Tuyakhov, Metall i Lityo Ukrainy, 10, No. 11: 31 (2001) (in Russian).
  4. V. P. Gavrilyuk, V. I. Tykhonovych, I. A. Shalevskaya, and Yu. I. Gutko, Abrazivostoykie Vysokokhromistye Chuguny (Lugansk: Noulidzh: 2010) (in Russian). ISBN 978-617-579-016-8
  5. E. V. Rozhkova, V. V. Rumyantsev, O. M. Romanov, and A. V. Treshchalin, Metallurgiya Mashinostroeniya, 1, No. 4: 19 (2002) (in Russian).
  6. B. A. Kirievskiy, L. G. Smolyakova, and T. K. Izyumova, Litye Iznosostoykie Materialy: Sbornik (Kiev: IPL AN USSR: 1978), p. 45 (in Russian).
  7. T. Ogneva, N. Martyushev, I. Altpeter, M. Surkov, A. Tokarev, and T. Krutskaya, Obrabotka Metallov (Tekhnologiya, Oborudovanie, Instrumenty), 20, No. 2: 130 (2018) (in Russian). Crossref
  8. N. V. Stepanova, T. A. Zimogliadova, A. Y. Ognev, D. S. Krivizhenko, Y. N. Maliutina, and O. A. Zimogliadova, IOP Conference Series: Materials Science and Engineering, No. 286: 2018 (2017). Crossref
  9. G. I. Silman, V. V. Kamynin, and V. V. Goncharov, Metal Sci. Heat Treatment, 40, Nos. 7-8: 387 (2007). Crossref
  10. N. V. Stepanova, V. Kumar, V. A. Kuznetsov, P. A. Popelyuh, and E. D. Golovin, Obrabotka Metallov (Tekhnologiya, Oborudovanie, Instrumenty), No. 1 (54): 81 (2012) (in Russian).
  11. N. V. Stepanova, A. A. Bataev, A. A. Sitnikov, and T. N. Oskolkova, Obrabotka Metallov (Tekhnologiya, Oborudovanie, Instrumenty), No. 4 (69): 72 (2015) (in Russian). Crossref
  12. G. I. Silman, Metal Sci. Heat Treatment, 51, Nos. 1-2: 19 (2009). Crossref
  13. I. A. Bataev, N. V. Stepanova, A. A. Bataev, A. A. Nikulina, and A. A. Razumakov, Fizika Metallov i Metallovedenie, 117, No. 9: 932 (2016) (in Russian). Crossref
  14. I. A. Bataev, N. V. Stepanova, A. A. Bataev, A. A. Nikulina, and A. A. Razumakov, Phys. Metals Metallogr., 117, No. 9: 901 (2016). Crossref
  15. N. V. Stepanova, I. A. Bataev, Y.-B. Kang, D. V. Lazurenko, A. A. Bataev, A. A. Razumakov, and A. M. Jorge Junior, Materials Characterization, 117: 260 (2017). Crossref
  16. Y. Prasetyo, S. K. Lee, and E. R. Baek, Key Eng. Mater., 457: 386 (2011). Crossref
  17. M. Tsujikawa, N. Matsumoto, K. Nakamoto, and Y. Michiura, Key Eng. Mater., 457: 151 (2011). Crossref
  18. C-H. Hsu and K-T. Lin, Mater. Sci. Eng.: A, 528, No. 18: 5706 (2011). Crossref
  19. R. K. Dasgupta, D. K. Mondal, T. K. Chakrabarti, and A. C. Ganguli, J. Mater. Eng. Performance, 21(8): 1728 (2012). Crossref
  20. K. Choe, S. Lee, M. Kim, and K. Lee, Mater. Sci. Forum, 654-656: 1448 (2010). Crossref
  21. V. I. Tykhonovych, O. I. Kovalenko, Yu. G. Bobro, and V. Novytskyy, Protsessy Litya, 3: 23 (1994) (in Russian).
  22. V. G. Novytskyy, V. P. Havryliuk, and V. I. Tykhonovych, Trenie i Iznos, 27, No. 6: 628 (2006) (in Russian).
  23. V. Novytskyi, V. Havryliuk, and V. Lakhnenko, J. Mater. Sci. Res., 2, No. 3: 33 (2013). Crossref
  24. N. S. Tsikunov, V. A. Batyrev, A. N. Gripachevskiy, and V. V. Tykhonovych, Paket Programm dlya Obrabotki Rezultatov Kolichestvennogo Rentgenospektralnogo Mikroanaliza Metodom ZAF na Mini-EVM (Kyiv: 1981) (Prepr./N.A.S. of Uktaine. Inst. for Metal Physics, 81.16, 1981) (in Russian).
  25. V. V. Nemoshkalenko, V. V. Gorskiy, V. V. Tykhonovych, and I. A. Yakubcov, Metallofizika, 6, No. 6: 93 (1984) (in Russian).
  26. S. I. Bulychev, V. P. Alehin, and A. P. Ternovskiy, Fizika i Khimiya Obrabotki Materialov, 2: 58 (1976) (in Russian).
  27. M. Kh. Shorshorov, S. I. Bulychev, and V. P. Alekhin, Metodicheskie Rekomendatsii po Issledovaniyu Fiziko-Mekhanicheskikh Svoystv Materialov Nepreryvnym Vdavlivaniem Nakonechnika (Moscow: IMET AN SSSR: 1980) (in Russian).
  28. V. A. Galanov, O. N. Grigorev, and Yu. V. Milman, Problemy Prochnosti, 11: 93 (1983) (in Russian).
  29. V. V. Tykhonovych, Metallofiz. Noveishie Tekhnol., 33, No. 12: 1671 (2011) (in Russian).
  30. V. V. Tykhonovych, Metallofiz. Noveishie Tekhnol., 37, No. 6: 817 (2015) (in Russian). Crossref
  31. V. V. Tykhonovych and V. N. Uvarov, Uspekhi Fiziki Metallov, 12, Iss. 2: 209 (2011) (in Russian). Crossref
  32. V. V. Tykhonovych, Metallofiz. Noveishie Tekhnol., 38, No. 6: 763 (2016) (in Russian). Crossref
  33. K. Shubhank and Y. Kang, Computer Coupling of Phase Diagrams and Thermochemistry, 45: 127 (2014).
  34. A. A. Bataev, N. V. Stepanova, I. A. Bataev, Y. Kang, and A. A. Razumakov, Metal Sci. Heat Treatment, 60, Nos. 3-4: 150 (2018). Crossref
  35. I. A. Bataev, N. V. Stepanova, A. A. Bataev, and A. A. Razumakov, Russ. Phys. J., 60, No. 6: 1017 (2017). Crossref