Effect of Long-Range Magnetic Order on Magnetic Phase Diagram in the Semi-Elliptic Model for Atomically Disordered Substitutional Binary Alloys

E. G. Len$^{1,2}$, T. D. Shatnii$^{1}$, V. V. Lizunov$^{1}$, T. S. Len$^{3}$, M. V. Ushakov$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Kyiv Academic University, N.A.S. and M.E.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{3}$National Aviation University, 1 Lyubomyr Huzar Ave., UA-03058 Kyiv, Ukraine

Received: 11.06.2021. Download: PDF

Within the framework of the generalized one-band Hubbard model for ordered binary substitutional alloys with strong electron correlations, a connection between magnetic phase diagram (MPD) and the features of the electronic structure of atomically completely disordered alloys is established with taken into account the short- and long-range magnetic orders. Numerical calculations of the density of electronic states, free energy, magnetic moments, and correlation parameters in their orientation are carried out at temperature of 0 K for completely atomically disordered alloys in a semi-elliptic model for a seed density of states. As shown an analysis of the density of electronic states, the semi-elliptical model is quite suitable for a comprehensive study at a qualitative level of the mutual influence of atomic and magnetic orderings. The accounting of long-range magnetic order generally preserves the character of the distribution of magnetic phases on the MPD but supplements the last with additional details in the region of the antiferromagnetic phase. As shown, the antiferromagnetic states with taking into account the ordering at long distances (with a separation of the sublattices) are energetically more profitable than states with antiferromagnetic ordering at short distances only.

Key words: completely atomically disordered alloys, strong electronic correlations, electronic structure, parameters of short- and long-range magnetic orderings, magnetic phase diagram.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i08/1005.html

DOI: https://doi.org/10.15407/mfint.43.08.1005

PACS: 71.10.Fd, 71.20.Be, 71.27.+a, 71.28.+d, 71.55.Jv, 75.10.Lp, 75.30.Kz

Citation: E. G. Len, T. D. Shatnii, V. V. Lizunov, T. S. Len, and M. V. Ushakov, Effect of Long-Range Magnetic Order on Magnetic Phase Diagram in the Semi-Elliptic Model for Atomically Disordered Substitutional Binary Alloys, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1005—1019 (2021) (in Ukrainian)


REFERENCES
  1. A. A. Smirnov, Obobshchennaya Teoriya Uporyadochivayushchikhsya Splavov [Generalized Theory of Ordered Alloys] (Kiev: Naukova Dumka: 1986).
  2. T. M. Radchenko and V. A. Tatarenko, Usp. Fiz. Met., 9, No. 1: 1 (2008). Crossref
  3. I. V. Vernyhora, S. M. Bokoch, and V. A. Tatarenko, Usp. Fiz. Met., 11, No. 3: 313 (2010). Crossref
  4. S. M. Bokoch and V. A. Tatarenko, Usp. Fiz. Met., 11, No. 4: 413 (2010). Crossref
  5. Yu. A. Izyumov, Phys. Usp., 38: 385 (1995). Crossref
  6. Yu. A. Izyumov and E. Z. Kurmaev, Phys. Usp., 51: 23 (2008). Crossref
  7. Yu. A. Izyumov and V. I. Anisimov, Elektronnaya Struktura Soyedineniy s Silnymi Korrelyatsiyami [Electronic Structure of Compounds with Strong Correlations] (Moscow–Izhevsk: NITs ‘Regulyarnaya i Khaoticheskaya Dinamika’: 2008).
  8. V. F. Los’ and S. P. Repetskiy, Metody Teorii Neuporyadochennykh Sistem [Methods of the Theory of Disordered Systems] (Kiev: Naukova Dumka: 1995).
  9. S. P. Repetsky, V. A. Tatarenko, I. M. Melnyk, and E. G. Len, Usp. Fiz. Met., 9, No. 3: 259 (2008). Crossref
  10. S. V. Nikolayev, Yu. S. Orlov, and V. A. Dudnikov, ZhETF, 158, Iss. 5 (11): 946 (2020). Crossref
  11. V. V. Lizunov, E. G. Len, I. M. Melnyk, M. V. Ushakov, T. S. Len, and V. A. Tatarenko, Metallofiz. Noveishie Tekhnol., 36: 575 (2014). Crossref
  12. V. V. Lizunov, E. G. Len, M. V. Ushakov, T. S. Len, and V. A. Tatarenko, Metallofiz. Noveishie Tekhnol., 37: 1405 (2015). Crossref
  13. S. P. Repetsky and T. D. Shatnii, Theoretical and Mathematical Physics, 131: 832 (2002). Crossref
  14. P. A. Igoshev, M. A. Timirgazin, A. A. Katanin, A. K. Arzhnikov, and V. Yu. Irkhin, Phys. Rev. B, 81: 094407 (2010). Crossref