Influence of Carbon and Scandium on Structure of Metastable Al$_3$Mg Phase and Properties of SPS-Composites

A. D. Rud$^{1}$, A. M. Lakhnik$^{1}$, I. M. Kirian$^{1}$, O. N. Syzonenko$^{2}$, N. S. Prystash$^{2}$, S. O. Demchenkov$^{3}$, Yu. V. Lepeeva$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$Institute of Pulse Processes and Technologies, N.A.S. of Ukraine, 43А Bohoyavlensky Ave., UA-54018 Mykolaiv, Ukraine
$^{3}$E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 13.04.2021; final version - 14.06.2021. Download: PDF

The solid dispersant (graphite) and additional alloying by scandium effects on the intermetallic compound formation in the Al–Mg system under mechanical alloying are studied. As found, the scandium additive significantly accelerates the metastable intermetallic Al$_3$Mg phase formation in (75% at. (Al + 2% wt. Sc)–25% at. Mg)/5% wt. C powder mixture compared to the (75% at. Al–25% at. Mg )/5% wt. C one. The synthesized powder composite, containing metastable Al$_3$Mg phase and solid solution based on aluminium, is consolidated by the spark plasma sintering (SPS) method. The phase composition, structure, and hardness of the SPS sintered samples are determined by X-ray diffraction, scanning electron microscopy, and indentation by the Vickers indenter. The hardness of samples formed after spark plasma sintering is in the range of 175–212 $HV$ and significantly exceeds the hardness of duralumin (124 $HV$).

Key words: aluminium-magnesium alloys, metastable Al$_3$Mg intermetallic compound, mechanical alloying, spark plasma sintering (SPS).



PACS: 61.05.cp, 64.60.My, 68.35.Dv, 81.20.Ev

Citation: A. D. Rud, A. M. Lakhnik, I. M. Kirian, O. N. Syzonenko, N. S. Prystash, S. O. Demchenkov, and Yu. V. Lepeeva, Influence of Carbon and Scandium on Structure of Metastable Al$_3$Mg Phase and Properties of SPS-Composites, Metallofiz. Noveishie Tekhnol., 43, No. 8: 1045—1052 (2021)

  1. A. Jambor and M. Beyer, Materials and Design, 18: 203 (1997). Crossref
  2. D. R. Lesuer and G. J. Kipouros, JOM, 47: 17 (1995). Crossref
  3. J. E. Allison and G. S. Cole, JOM, 45: 19 (1993). Crossref
  4. Z. Yin, Q. Pan, Y. Zhang, and F. Jiang, Mater. Sci. Eng. A, 280, Iss. 1: 151 (2000). Crossref
  5. A. L. Berezina, T. A. Monastyrskaya, E. A. Segida, K. V. Chuistov, U. Shmidt, and A. V. Kotko, Engineering Mechanics, 11, No. 5: 393 (2004).
  6. Yu. A. Filatov, V. I. Yelagin, and V. V. Zakharov, Mater. Sci. Eng. A, 280, Iss. 1: 97 (2000). Crossref
  7. M. Bouchear, D. Hamana, and T. Laout, Phil. Mag. A, 73: 1733 (1996). Crossref
  8. M. J. Starink and A-M. Zahra, Acta Mater., 46, 10: 3381 (1998). Crossref
  9. D. Hamana, M. Bouchear, M. Betrouche, A. Derafa, and N. Y. Rokhmanov, J. Alloys Compd., 320: 93 (2001). Crossref
  10. M. Slámová, M. Janeček, and M. Cieslar, Mater. Sci. Eng. A, 462: 375 (2007). Crossref
  11. Yi. Gaosong, D. A. Cullen, K. C. Littrell, W. Golumbfskie, E. Sundberg, and M. L. Free, Metall. Mater. Trans. A, 48: 2040 (2017). Crossref
  12. T. Sato and A. Kamio, Mater. Sci. Eng. A, 146, Iss. 1-2: 161 (1991). Crossref
  13. D. Kleiven, O. L. Ødegård, K. Laasonen, and J. Akola, Acta Mater., 166: 484 (2019). Crossref
  14. T. Sato, Y. Kojima, and T. Takahashi, Metall. Mater. Trans. A, 13: 1373 (1982). Crossref
  15. K. Osamura and T. Ogura, Metall. Mater. Trans. A, 15: 835 (1984). Crossref
  16. C. Gault, A. Dauger, and P. Boch, Acta Mater., 28, Iss. 1: 51 (1980). Crossref
  17. A. L. Berezina, E. A. Segida, T. A. Monastyrskaya, and A. V. Kotko, Metallofiz. Noveishie Tekhnol., 30, No. 6: 849 (2008) (in Russian).
  18. J. S. Benjamin, Sci. American, 234: 40 (1976). Crossref
  19. D. L. Zhang, T. B. Massalski, and M. R. Paruchuri, Metall. Mater. Trans. A, 25: 73 (1994). Crossref
  20. C. Vargel, Corrosion of Aluminium (Elsevier: 2004), p. 211. Crossref
  21. A. Calka, W. Kaczmarek, and J. S. Williams, J. Mater. Sci., 28: 15 (1993). Crossref
  22. M. Schoenitz and E. L. Dreizin, J. Mater. Res., 18: 1827 (2003). Crossref
  23. L. Liu and Y. F. Zhang, J. Alloys Compd., 290, Iss. 1-2: 279 (1999). Crossref
  24. S. A. Rounaghi and E. Esmaeili, J. Nanostruct., 7, Iss. 2: 147 (2017). Crossref
  25. Z. A. Munir, D. V. Quach, and M. Ohyanagi, J. Am. Ceram. Soc., 94: 1 (2011). Crossref
  26. O. N. Sizonenko, E. G. Grigoryev, N. S. Pristash, A. D. Zaichenko, A. S. Torpakov, Ye. V. Lypian, V. A. Tregub, A. G. Zholnin, A. V. Yudin, and A. A. Kovalenko, High Temp. Mater. Process., 36, Iss. 9: 891 (2017). Crossref
  27. L. Luterotti and S. Gialanella, Acta Mater., 46, Iss. 1: 101 (1998). Crossref
  28. A. F. Norman, P. B. Prangell, and R. S. McEwen, Acta Mater., 46, Iss. 16: 5715 (1999). Crossref
  29. R. Yang, B. Tang, and T. Gao, Int. J. Modern Phys. B, 30, No. 01: 1550243 (2017). Crossref
  30. D.-L. Li, P. Chen, J.-X. Yi, B.-Y. Tang, L.-M. Peng, and W.-J. Ding, J. Phys. D: Appl. Phys., 42: 225407 (2009). Crossref
  31. A. D. Rud, I. M. Kirian, A. M. Lakhnik, A. V. Kotko, and N. D. Rud, Appl. Nanosci. (2021). Crossref