High-Temperature Investigation of Rapidly Quenched Al–Fe–Nb Alloys

S. I. Mudry, O. V. Shved

Ivan Franko National University of Lviv, 1 Universytets’ka Str., UA-79000 Lviv, Ukraine

Received: 08.10.2018; final version - 14.07.2021. Download: PDF

The structure variation at heating of rapidly cooled alloys of Al–Fe–Nb system (Al$_{90}$Fe$_7$Nb$_3$ and Al$_{93}$Fe$_4$Nb$_3$) has been studied. It is shown that quenched alloys are amorphous and the temperature dependence of diffraction patterns within temperature range from 293 to 893 K is analyzed. X-ray diffraction patterns allowed determining the main structure parameters and their temperature dependences. The three-stage mechanism of crystallization is established and phase content variation at heating is determined. It is found that the microhardness of amorphous alloys is significantly higher compared to the crystalline ones.

Key words: amorphous aluminium alloys, quenching, crystallization, grain size, microhardness.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i10/1387.html

DOI: https://doi.org/10.15407/mfint.43.10.1387

PACS: 61.05.cp, 61.43.Er, 61.82.Bq, 62.20.-x, 64.60.My, 64.70.K-

Citation: S. I. Mudry and O. V. Shved, High-Temperature Investigation of Rapidly Quenched Al–Fe–Nb Alloys, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1387—1399 (2021) (in Ukrainian)


REFERENCES
  1. M. Palm, Int. J. Mater. Res., 100, No. 3: 277 (2009). Crossref
  2. A. Inoue, Prog. Mat. Sci., 43: 365 (1998). Crossref
  3. E. Fazakas, S. N. Kane, K. Lazar, and L. K. Varga, ISIAME 2008 (Berlin, Heidelberg: Springer: 2009). Crossref
  4. D. M. Dimiduk, M. G. Mendiratta, D. Banerjee, and H. A. Lipsitt, Acta Metall., 36, No. 11: 2947 (1988). Crossref
  5. D. G. Morris, L. M. Requejo, and M. A. Munoz-Morris, Scr. Mat., 54, No. 3: 393 (2006). Crossref
  6. F. Audebert, A. García Escorial, and H. Sirkin, Scr. Mat., 36, No. 4: 405 (1997). Crossref
  7. F. Audebert, S. M. Vázquez, A. Gutiérrez, I. Vergara, G. Alvarez, A. García Escorial, and H. Sirkin, Mat. Sci. Forum, 269: 837 (1998). Crossref
  8. F. Audebert, M. Galano, and F. Saporiti, J. Alloys Compd., 615: 621 (2014). Crossref
  9. L. F. Mondolfo, Aluminium Alloys: Structure and Properties (London: Butterworths: 1976), p. 392. Crossref
  10. A. N. Belov, D. G. Eskin, and A. A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys (Elsevier Science: 2005).
  11. J. Rodriguez-Carvajal and T. Roisnel, FullProf.98 and WinPLOTR New Windows 95/NT Applications for Diffraction, in Commission for Powder Diffraction, International Union of Crystallography, Newsletter 20 (May-August, 1998).
  12. H. Chen, Q. Wang, Y. Wang, J. Qiang, and Ch. Dong, Philos. Mag., 90, No. 30: 3935 (2010). Crossref
  13. J. L. Jorda, R. Flukiger, and J. Muller, J. Less-Common Metals, 75, No. 2: 227 (1980). Crossref
  14. V. I. Lysov, T. L. Tsaregradskaya, O. V. Turkov, and G. V. Saenko, Russian Journal of Physical Chemistry A, 91, No. 12: 2322 (2017). Crossref
  15. J. Sitek and J. Degmová, Hyperfine Interact., 165, No.1: 121 (2005). Crossref
  16. A. L. Greer, Science, 267: 1947 (1995). Crossref