Welding of Single Crystals of Heat-Resistant Nickel Alloys as Innovations of Power Gas Turbines

K. A. Yushchenko, B. A. Zadery, I. S. Gakh, A. V. Zviagintseva, O. O. Fomakin, A. V. Zavdoveev

E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 22.07.2021. Download: PDF

The work is associated with the increasing use of gas turbines as part of equipment of power plants, gas pumping units, power ship engines and the need to increase their power, functional parameters, increase thermal and operational efficiency, and environmental friendliness. The solution of such requests in technical terms is associated with an increase in the temperature of the working fluid (gas) at the inlet to the turbine for the set of development and implementation of new schemes, structures, technologies and materials, in particular, with the use and improvement of high-alloy heat-resistant nickel alloys with a monocrystalline structure and using welding. The aim of the work is to develop new approaches to the production of single-crystal welded structures for critical purposes with increased mechanical characteristics and operational parameters. The results of studies of the structure, mechanical characteristics of joints and examples of welded structures of prototypes of gas turbines of the ‘composite blade’ and ‘bling’ type are presented. The expediency of further development of the proposed technologies together with developers, manufacturers and operators of gas turbines in terms of design, technological refinement and industrial development is noted.

Key words: heat-resistant nickel alloys, single crystals, welded structures of complex geometry, electron beam welding, all-welded folded blades, gas turbines monowheel ‘bling’, conditions for the formation of a single crystal structure, electron backscattering diffraction.

URL: https://mfint.imp.kiev.ua/en/abstract/v43/i10/1401.html

DOI: https://doi.org/10.15407/mfint.43.10.1401

PACS: 61.72.Dd, 81.05.Bx, 81.10.-h, 81.20.Vj

Citation: K. A. Yushchenko, B. A. Zadery, I. S. Gakh, A. V. Zviagintseva, O. O. Fomakin, and A. V. Zavdoveev, Welding of Single Crystals of Heat-Resistant Nickel Alloys as Innovations of Power Gas Turbines, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1401—1415 (2021) (in Ukrainian)

  1. A. V. Logunov, M. N. Burov, and D. V. Danilov, Dvigatel', No. 1: 10 (2016) (in Russian).
  2. K. Tsukagoshi, A. Muyama, J. Masada, Y. Iwasaki, and E. Ito, Mitsubishi Heavy Industries, Ltd. Technical Review, 44, No. 4: 1 (2007).
  3. L. S. Langston, Global Gas Turbine News, No. 9: 76 (2014). Crossref
  4. T. Hino, T. Kobayashi, Y. Koizumi, H. Harada, and T. Yamagata, Superalloys (Eds. T. M. Pollock, R. D. Kissinger, R. R. Bowman, K. A. Green, M. McLean, S. Olson, and J. J. Schirm) (TMS: 2000), p. 729.
  5. Y. Koizumi, T. Kobayashi, T. Yokokawa, T. Kimura, M. Osawa, and H. Harada, Cost Conf. Liege (1998), part 2: 1089.
  6. E. N. Kablov, V. N. Tolorayya, N. G. Orekhov, and I. M. Demonis, Aviatsionnye Materialy i Tekhnologii, No. 1: 118 (2004) (in Russian).
  7. S. Z. Kopelev, M. N. Galkin, A. A. Kharin, and I. V. Shevchenko, Teplovye i Gidravlicheskie Kharakteristiki Okhlazhdaemykh Lopatok Gazovykh Turbin [Thermal and Hydraulic Characteristics of Cooled Blades of Gas Turbines] (Moscow: Mashinostroenie: 1993) (in Russian).
  8. A. A. Inozemtsev, M. A. Nikhamkin, and V. L. Sandratskiy, Osnovy Kon-struirovaniya Aviatsionnykh Dvigateley i Energeticheskikh Ustanovok [The Fundamentals of Designing Aircraft Engines and Power Plants] (Moscow: Mashinostroenie: 2008), vol. 2 (in Russian).
  9. H. Matsuzaki, Y. Suto, Y. Kanazawa, M. Sato, I. Kobayashi, and Y. Kobayashi, Turbo Expo: Power for Land, Sea and Air, 4, Paper No: 96-GT-294, V004T10A018 (2015). Crossref
  10. R. L. Altman, Gas Turbine Technology Benefits for Commercial Airplane Opera-tor (Pratt and Whitney, United Technologies: 1991).
  11. XF9-1, the World's Best Standards Fighter Engine, Has Been Completed - Ja-pan's Military Technology, Interview with the Developer, BLOGOS, Part 1/2 (2019 ) (in Japanese).
  12. E. O. Fomichev and N. N. Voronin, Dvigatel', No. 5: 18 (2013) (in Russian).
  13. A. Supov, S. Dautov, V. Koval'chuk, O. Ospennikova, V. Lukin, and M. Samorukov, Sci. Intensive Tekhnol. Mekhan. Eng., 1, No. 3: 28 (2016) (in Russian). Crossref
  14. A. V. Lyushinskiy, Svarochnoe Proizvodstvo, 30, No. 7: 17 (2016) (in Russian).
  15. E. V. Galieva, V. A. Valitov, R. Ya. Lutfullin, S. Dmitriev, A. Akhunova, and M. Mukhametrakhimov, Materials Science Forum, 838-839: 350 (2016). Crossref
  16. V. M. Bychkov, A. S. Selivanov, A. Yu. Medvedev, V. A. Supov, B. O. Bol'shakov, R. R. Grin', and F. F. Musin, Vestnik UGATU, 16, No. 7: 112 (2012) (in Russian).
  17. V. P. Morochko, L. I. Sorokin, and N. Yu. Zybko, Avtomaticheskaya Svarka, No. 12: 42 (1980) (in Russian).
  18. L. I. Sorokin, Svarochnoe Proizvodstvo, No. 7: 11 (2003) (in Russian).
  19. C. Wiednig, C. Lochbichlerb, N. Enzingera, C. Beala, and C. Sommitsch, Proc. Engineering, No. 86: 184 (2014). Crossref
  20. K. A. Yushchenko, B. A. Zaderiy, I. S. Gakh, and O. P. Karasevskaya, Avto-maticheskaya Svarka, No. 8: 21 (2016) (in Russian). Crossref
  21. K. A. Yushchenko, I. S. Gakh, B. A. Zaderiy, A. V. Zvyagintseva, and O. P. Karasevskaya, Avtomaticheskaya Svarka, No. 5: 46 (2013) (in Russian).