Solidus Temperatures and Hot Hardness of Ti–Nb–Mo Alloys

O. M. Myslyvchenko$^{1}$, A. A. Bondar$^{1}$, V. М. Voblikov$^{1}$, N. I. Tsyganenko$^{1}$, T. A. Silinska$^{1}$, O. P. Gaponova$^{2}$

$^{1}$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine
$^{2}$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine

Received: 02.10.2021; final version - 18.01.2022. Download: PDF

Eight alloys of the Ti–Nb–Mo system are synthesized by the arc remelting method. As shown, they have dendritic microstructures typical of casting. The phase composition and lattice periods of the formed phases are determined. Using the method of differential thermal analysis (DTA), phase transformations in the solid state are investigated, and the temperatures of the onset of melting and crystallization are determined. For alloys, the solidus temperature of which is above 2000°C, together with DTA, the Pirani–Althermum pyrometric method is also used. Based on the experimental data, the temperature dependences of the hardness of the alloys are constructed and the activation energies of deformation of the material under the indenter are calculated. The analysis of the curves of the dependence of the hardness of the alloys is carried out and the temperature of the sharp softening of the material is determined. As shown, that the $\alpha \to \beta$ transition in titanium alloys with an unstable $\beta$-phase does not lead to a significant change in hardness.

Key words: solidus temperature, hot hardness, high-temperature strength, titanium alloys, crystal structure.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i04/0459.html

DOI: https://doi.org/10.15407/mfint.44.04.0459

PACS: 07.20.Ka, 47.80.Fg, 61.05.C-, 61.82.Bg, 62.20.Qp, 62.20.-x

Citation: O. M. Myslyvchenko, A. A. Bondar, V. М. Voblikov, N. I. Tsyganenko, T. A. Silinska, and O. P. Gaponova, Solidus Temperatures and Hot Hardness of Ti–Nb–Mo Alloys, Metallofiz. Noveishie Tekhnol., 44, No. 4: 459—469 (2022) (in Ukrainian)


REFERENCES
  1. V. N. Yeremenko and L. A. Tret'yachenko, Troynyye Sistemy Titana s Perekhodnymi Metallami IV-VI Grupp (Kyiv: Naukova Dumka: 1987) (in Russian).
  2. V. Cheverikin, G. Ghosh, A. Makudera, and J. C. Tedenac, Mo-Nb-Ti Ternary Phase Diagram Evaluation (Stuttgart: Materials Science International: 2015), Document ID 10.21856.1.1. Crossref
  3. I. I. Kornilov and P. S. Polyakova, Zhurnal Neorganicheskoy Khimii, 3, No. 4: 879 (1958) (in Ukrainian).
  4. C. Marker, S. L. Shang, J. C. Zhao, and Z. K. Liu, Calphad, 61: 72 (2018). Crossref
  5. A. K. Thakur, V. K. Pandey, and V. Jindal, J. Phase Equil. Diffusion, 41, No. 6: 846 (2020). Crossref
  6. J. H. Shim, C. S. Oh, and D. N. Lee, Metall. Mater. Trans. B, 27, No. 6: 955 (1996). Crossref
  7. W. Xiong, Y. Du, Y. Liu, B. Y. Huang, H. H. Xu, H. L. Chen, and Z. Pan, Computer Coupling of Phase Diagrams and Thermochemistry, 28: 133 (2004). Crossref
  8. N. N. Sobolev, V. I. Levakov, O. P. Yelyutin, and V. S. Mikheyev, Izvestiya AN SSSR: Metally, 2: 217 (1974) (in Russian).
  9. H. D. Merchant, G. S. Murty, S. N. Bahadur, L. T. Dwivedi, and Y. Mehrotra, J. Mater. Sci., 8, No. 3: 437 (1973). Crossref
  10. G. A. Geach, International Metall. Rev., 19, No. 1: 255 (1974). Crossref
  11. R. Hill, The Mathematical Theory of Plasticity (Oxford: Clarendon Press: 1950).
  12. D. Tabor, Rev. Phys. Technol., 1, No. 3: 145 (1970). Crossref
  13. M. O. Lai and K. B. Lim, J. Mater. Sci., 26: 2031 (1991). Crossref
  14. D. Tabor, Philos. Magazine A, 74, No. 5: 1207 (1996). Crossref
  15. O. M. Ivasishin, V. I. Bondarchuk, I. V. Moiseeva, P. M. Okrainets, and V. K. Pishchak, Metal Phys. Advanced Technol., 19, No. 2: 397 (2001).
  16. M. Pirani and H. Alterthum, Z. Elektrochem. Bd. 29, No. 1/2: 5 (1923) (in German).
  17. T. Ya. Velikanova, A. A. Bondar, and A. V. Grytsiv, J. Phase Equil. Diffusion, 20, No. 2: 125 (1999). Crossref
  18. Ju. A. Kocherzhinsky, Proc. Third ICTA (Basel: Birkhäuser Verlag: 1971), vol. 1.
  19. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications (John Wiley and Sons: 2003). Crossref
  20. H. A. Kishawy and A. Hosseini, Materials Forming, Machining and Tribology (Springer: 2019), p. 55. Crossref
  21. W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (Wiley-Inter-Science: 1972).
  22. H. D. Merchant, G. S. Murty, S. N. Bahadur, L. T. Dwivedi, and Y. Mehrotra, J. Mater. Sci., 8: 437 (1973). Crossref
  23. O. M. Myslyvchenko, A. A. Bondar, V. F. Horban, Yu. F. Luhovskyi, V. B. Sobolev, and I. B. Tikhonova, Mater. Sci., 56, No. 2: 224 (2020). Crossref
  24. O. M. Myslyvchenko, A. A. Bondar, N. I. Tsyganenko, V. M. Petyukh, Yu. F. Lugovskyi, and V. F. Gorban, Mater. Sci., 56, No. 4: 481 (2021). Crossref