Solidus Temperatures and Hot Hardness of Ti–Nb–Mo Alloys

O. M. Myslyvchenko$^{1}$, A. A. Bondar$^{1}$, V. М. Voblikov$^{1}$, N. I. Tsyganenko$^{1}$, T. A. Silinska$^{1}$, O. P. Gaponova$^{2}$

$^{1}$Институт проблем материаловедения им. И. Н. Францевича НАН Украины, ул. Академика Кржижановского, 3, 03142 Киев, Украина
$^{2}$Сумский государственный университет, ул. Римского-Корсакова, 2, 40007 Сумы, Украина

Получена: 02.10.2021; окончательный вариант - 18.01.2022. Скачать: PDF

Eight alloys of the Ti–Nb–Mo system are synthesized by the arc remelting method. As shown, they have dendritic microstructures typical of casting. The phase composition and lattice periods of the formed phases are determined. Using the method of differential thermal analysis (DTA), phase transformations in the solid state are investigated, and the temperatures of the onset of melting and crystallization are determined. For alloys, the solidus temperature of which is above 2000°C, together with DTA, the Pirani–Althermum pyrometric method is also used. Based on the experimental data, the temperature dependences of the hardness of the alloys are constructed and the activation energies of deformation of the material under the indenter are calculated. The analysis of the curves of the dependence of the hardness of the alloys is carried out and the temperature of the sharp softening of the material is determined. As shown, that the $\alpha \to \beta$ transition in titanium alloys with an unstable $\beta$-phase does not lead to a significant change in hardness.

Ключевые слова: solidus temperature, hot hardness, high-temperature strength, titanium alloys, crystal structure.

URL: https://mfint.imp.kiev.ua/ru/abstract/v44/i04/0459.html

PACS: 07.20.Ka, 47.80.Fg, 61.05.C-, 61.82.Bg, 62.20.Qp, 62.20.-x


ЦИТИРОВАННАЯ ЛИТЕРАТУРА
  1. В. Н. Еременко, Л. A. Третьяченко, Тройные системы титана с переходными металлами IV–VI групп (Киев: Наукова думка: 1987).
  2. V. Cheverikin, G. Ghosh, A. Makudera, and J. C. Tedenac, Mo–Nb–Ti Ternary Phase Diagram Evaluation (Stuttgart: Materials Science International: 2015), Document ID 10.21856.1.1. Crossref
  3. I. I. Корнілов, П. С. Полякова, Журнал неорганической химии, 3, № 4: 879 (1958).
  4. C. Marker, S. L. Shang, J. C. Zhao, and Z. K. Liu, Calphad, 61: 72 (2018). Crossref
  5. A. K. Thakur, V. K. Pandey, and V. Jindal, J. Phase Equil. Diffusion, 41, No. 6: 846 (2020). Crossref
  6. J. H. Shim, C. S. Oh, and D. N. Lee, Metall. Mater. Trans. B, 27, No. 6: 955 (1996). Crossref
  7. W. Xiong, Y. Du, Y. Liu, B. Y. Huang, H. H. Xu, H. L. Chen, and Z. Pan, Computer Coupling of Phase Diagrams and Thermochemistry, 28: 133 (2004). Crossref
  8. Н. Н. Соболев, В. И. Леваков, О. П. Елютин, В. С. Михеев, Известия АН СССР: Металлы, 2: 217 (1974).
  9. H. D. Merchant, G. S. Murty, S. N. Bahadur, L. T. Dwivedi, and Y. Mehrotra, J. Mater. Sci., 8, No. 3: 437 (1973). Crossref
  10. G. A. Geach, International Metall. Rev., 19, No. 1: 255 (1974). Crossref
  11. R. Hill, (Oxford: Clarendon Press: 1950).
  12. D. Tabor, Rev. Phys. Technol., 1, No. 3: 145 (1970). Crossref
  13. M. O. Lai and K. B. Lim, J. Mater. Sci., 26: 2031 (1991). Crossref
  14. D. Tabor, Philos. Magazine A, 74, No. 5: 1207 (1996). Crossref
  15. O. M. Ivasishin, V. I. Bondarchuk, I. V. Moiseeva, P. M. Okrainets, and V. K. Pishchak, Metal Phys. Advanced Technol., 19, No. 2: 397 (2001).
  16. M. Pirani and H. Alterthum, Z. Elektrochem. Bd. 29, No. 1/2: 5 (1923).
  17. T. Ya. Velikanova, A. A. Bondar, and A. V. Grytsiv, J. Phase Equil. Diffusion, 20, No. 2: 125 (1999). Crossref
  18. Ju. A. Kocherzhinsky, Proc. Third ICTA (Basel: Birkhäuser Verlag: 1971), vol. 1.
  19. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications (John Wiley and Sons: 2003). Crossref
  20. H. A. Kishawy and A. Hosseini, Materials Forming, Machining and Tribology (Springer: 2019), p. 55. Crossref
  21. W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (Wiley-Inter-Science: 1972).
  22. H. D. Merchant, G. S. Murty, S. N. Bahadur, L. T. Dwivedi, and Y. Mehrotra, J. Mater. Sci., 8: 437 (1973). Crossref
  23. O. M. Myslyvchenko, A. A. Bondar, V. F. Horban, Yu. F. Luhovskyi, V. B. Sobolev, and I. B. Tikhonova, Mater. Sci., 56, No. 2: 224 (2020). Crossref
  24. O. M. Myslyvchenko, A. A. Bondar, N. I. Tsyganenko, V. M. Petyukh, Yu. F. Lugovskyi, and V. F. Gorban, Mater. Sci., 56, No. 4: 481 (2021). Crossref