Effect of Ar Annealing on Diffusion and Thermal Stability of Transition Metal Thin-Film Systems

A. K. Orlov$^{1}$, I. O. Kruhlov$^{1}$, A. Lozova$^{1}$, S. I. Sidorenko$^{1}$, S. V. Prikhodko$^{1,2}$, S. M. Voloshko$^{1}$

$^{1}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine
$^{2}$University of California (UCLA), 420 Westwood Plaza, 2121K-Engineering 5, CA 90095-1595 Los Angeles, USA

Received: 05.04.2022; final version - 27.04.2022. Download: PDF

The processes of diffusion-induced structure and phase formation in nanoscale Ni/Cu/V thin films deposited by DC magnetron sputtering on a Si (100) substrate after annealing in the temperature range of 200–550°С in vacuum (10$^{-3}$ Pa) and argon (200 Pa) atmospheres are studied. Thermal stability, diffusion mass transfer of components and changes of phase composition in vacuum and Ar atmospheres are analysed using synchrotron and copper radiation x-ray diffraction (XRD) and secondary ion mass spectrometry (SIMS). Due to the different diffusion mobility of Cu and Ni atoms with the temperatures increase in the studied interval, the two regions with different Ni and Cu concentrations are formed. Grain boundary and bulk mechanisms of Cu and Ni diffusion and the influence of the heat treatment atmosphere are discussed. As shown, annealing in vacuum atmosphere, compared to annealing in argon, results in an increase in the onset temperature of the Cu-based solid solution formation by 100°C and a decrease in the concentration of Ni in this solid solution. Thus, upon annealing in vacuum, the thin film maintains thermal stability over a larger temperature range compared with annealing in argon.

Key words: nanosize films, solid solution, synchrotron radiation, heat treatment, diffusion, phase formation.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i06/0735.html

DOI: https://doi.org/10.15407/mfint.44.06.0735

PACS: 66.30.Lw, 68.35.Fx, 68.35.Rh, 68.55.Ln, 72.15.-v, 81.40.-z

Citation: A. K. Orlov, I. O. Kruhlov, A. Lozova, S. I. Sidorenko, S. V. Prikhodko, and S. M. Voloshko, Effect of Ar Annealing on Diffusion and Thermal Stability of Transition Metal Thin-Film Systems, Metallofiz. Noveishie Tekhnol., 44, No. 6: 735—749 (2022)

  1. C. Nacereddine, A. Layadi, A. Guittoum, S. M. Cherif, T. Chauveau, D. Billet, J. Ben Youssef, A. Bourzami, and M. H. Bourahli, Mater. Sci. Eng.: B, 136, Iss. 2-3: 197 (2007). Crossref
  2. S. Tepner, N. Wengenmeyr, M. Linse, A. Lorenz, M. Pospischil, and F. Clement, Adv. Mater. Technol., 5, No. 10: 2000654 (2020). Crossref
  3. A. U. Rehman and S. H. Lee, Crystalline Silicon Solar Cells with Nickel/Copper Contacts (Solar Cells New Approaches and Reviews (Ed. Leonid A. Kosyachenko) (IntechOpen: 2015). Crossref
  4. M. Mebarki and A. Layadi, Materials Research Express, 6, No. 11: 115505 (2019). Crossref
  5. B. Phua, X. Shen, P.C. Hsiao, C. Kong, A. Stokes, and A. Lennon, Solar Energy Materials and Solar Cells, 215: 110638 (2020). Crossref
  6. J. Colwell, P.C. Hsiao, X. Shen, W. Zhang, X. Wang, S. Lim, and A. Lennon, Solar Energy Materials and Solar Cells, 174: 225 (2018). Crossref
  7. H. Ono, T. Nakano, and T. Ohta, Appl. Phys. Lett., 64, No. 12: 1511 (1994). Crossref
  8. Jian Li, J. W. Mayer, and E. G. Colgan, J. Appl. Phys., 70, No. 5: 2820 (1991). Crossref
  9. J. Cho, H. S. Radhakrishnan, R. Sharma, M. R. Payo, M. Debucquoy, A. Van der Heide, I. Gordon, J. Szlufcik, and J. Poortmans, Solar Energy Materials and Solar Cells, 206: 110324 (2020). Crossref
  10. A. Tynkova, S. Sidorenko, S. Voloshko, A. R. Rennie, and M. A. Vasylyev, Vacuum, 87: 69 (2013). Crossref
  11. I. A. Vladymyrskyi, M. V. Karpets, F. Ganss, G. L. Katona, D. L. Beke, S. I. Sidorenko, T. Nagata, T. Nabatame, T. Chikyow, G. Beddies, M. Albrecht, and Iu. M. Makogon, J. Appl. Phys., 114, No. 16: 164314 (2013). Crossref
  12. I. O. Kruhlov, L. M. Kapitanchuk, T. Ishikawa, S. I. Sidorenko, and S. M. Voloshko, Metallofiz. Noveishie Tekhnol., 43, No. 2: 183 (2021) (in Ukrainian). Crossref
  13. S. K. Kurinec, I. Toor, Y. K. Chao, H. Shillingford, P. Holloway, S. Ray, K. Beckham, Thin Solid Films, 162: 247 (1988). Crossref
  14. A. K. Orlov, O. O. Zhabynska, I. A. Vladymyrskyi, S. M. Voloshko, S. I. Sidorenko, K. Kato, and T. Ishikawa, Thin Solid Films, 658: 12 (2018). Crossref
  15. Y. Tran and C. D. Wright, J. Magn. Magn. Mater., 331: 216 (2013). Crossref
  16. K. Kato, Y. Tanaka, M. Yamauchi, K. Ohara, and T. Hatsui, J. Synchrotron Rad., 26: 762 (2019). Crossref
  17. M. E. Straumanis and L. S. Yu, Acta Cryst. Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 25, No. 6: 676 (1969). Crossref
  18. D. Fuks, S. Dorfman, Y. F. Zhukovskii, E. A. Kotomin, and A. M. Stoneham, Surf. Sci., 499, Iss. 1: 24 (2002). Crossref
  19. S. I. Sidorenko, S. M. Voloshko, and M. A. Vasiliev, Defect and Diffusion Forum, 156: 215 (1998). Crossref
  20. S. M. Voloshko, S. I. Sidorenko, and I. N. Makeeva, Phys. Metals, 14, No. 10: 1136 (1995).
  21. S. M. Voloshko, S. I. Sidorenko, and I. N. Makeeva, Functional Materials, 2, No. 4: 453 (1995).
  22. J. Häglund, A. F. Guillermet, G. Grimvall, and M. Körling, Phys. Rev. B, 48, No. 16: 11685 (1993). Crossref
  23. S. A. Firstov, N. A. Krapivka, M. A. Vasiliev, S. I. Sidorenko, and S. M. Voloshko. Powder Metall. Met. Ceram., 55, No. 7-8: 458 (2016). Crossref
  24. A. K. Orlov, I. O. Kruhlov, O. V. Shamis, I. A. Vladymyrskyi, I. E. Kotenko, S. M. Voloshko, S. I. Sidorenko, T. Ebisu, K. Kato, H. Tajiri, O. Sakata, and T. Ishikawa, Vacuum, 150: 186 (2018). Crossref
  25. P. Scherrer, Kolloidchemie Ein Lehrbuch (Berlin, Heidelberg: Springer: 1912), p. 387 (in German). Crossref
  26. N. W. Ashcroft and A. R. Denton, Phys. Rev. A, 43, No. 6: 3161 (1991). Crossref
  27. B. Hugsted, L. Buene, T. Finstad, O. Lønsjø, and T. Olsen, Thin Solid Films, 98, No. 2: 81 (1982). Crossref
  28. A. I. Oleshkevych, A. M. Gusak, S. I. Sidorenko, and S. M. Voloshko, Ukr. J. Phys., 55, No. 9: 1005 (2010) (in Ukrainian).
  29. G. Guisbiers and M. José-Yacaman, Use of Chemical Functionalities to Control Stability of Nanoparticles (Molecular Sciences and Chemical Engineering: 2018). Crossref
  30. M. V. Akdeniz and A. O. Mekhrabov, Acta Mater., 46, Iss. 4: 1185 (1998). Crossref
  31. Y. Çelik, W. Escoffier, M. Yang, E. Flahaut, and E. Suvacı, Carbon, 109: 529 (2016). Crossref
  32. S. I. Sidorenko, S. M. Voloshko, S. O. Zamulko, and A. I. Oleshkevych, Diffusion and Interfaces Stability in Thin Film Metallic Contacts (Kyiv: Naukova Dumka: 2014), p. 199.