On Role of Plasma Electrons in CVD Synthesis of Carbon Nanostructures with Addition of Plasma Component of Carbon-Containing Gas

M. Ye. Svavil’nyi, V. Ye. Panarin, A. A. Shkola

G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 03.06.2022; final version - 13.06.2022. Download: PDF

The paper presents the results of experimental studies of the process of vacuum CVD synthesis of carbon nanostructures on substrates of Si, SiO$_{2}$/Si, Ti, with controlled addition of the plasma component of the working gases С$_{2}$Н$_{2}$ and СН$_{4}$ to the synthesis zone. In the physicochemical processes of the synthesis of the obtained nanostructures, the main role is played by the electronic component of the plasma, which reaches the substrate and recombination of ions with plasma electrons occurs on the substrate surface. The plasma component in the synthesis zone significantly changes the structure of nanocarbon phases, their ratio, and distribution over the substrate, which determines the properties of the resulting coatings. The effect of the plasma component of the working gases becomes significant when the proportion of plasma in the total amount of gas is about 1%. Wherein, regardless of the physical nature of the substrate, specific carbon nanostructures with a significant amount of polymeric carbon components are formed on it.

Key words: carbon nanotubes, vacuum CVD synthesis, plasma technologies, polymer synthesis.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i07/0943.html

DOI: https://doi.org/10.15407/mfint.44.07.0943

PACS: 51.50.+v, 52.80.Sm, 68.55.-a, 81.05.-t, 81.20.-a

Citation: M. Ye. Svavil’nyi, V. Ye. Panarin, and A. A. Shkola, On Role of Plasma Electrons in CVD Synthesis of Carbon Nanostructures with Addition of Plasma Component of Carbon-Containing Gas, Metallofiz. Noveishie Tekhnol., 44, No. 7: 943—952 (2022)


REFERENCES
  1. M. Ye. Svavil'nyi, V. Ye. Panarin, A. A. Shkola, A. S. Nikolenko, and V. V. Strelchuk, Carbon, 167: 132 (2020). Crossref
  2. V. Ye. Panarin, N. Ye. Svavil'nyi, A. I. Khominich, and A. A. Shkola, Applied Nanoscience, 10: 2885 (2020). Crossref
  3. V. Ye. Panarin, M. Ye. Svavil'nyi, M. A. Skoryk, A. I. Khominich, T. O. Prikhna, and A. P. Shapovalov, J. Superhard Materials, 40: 267 (2018). Crossref
  4. J. Robertson, Materials Science Engineering R: Reports, 37, Iss. 4-6: 129 (2002). Crossref
  5. V. Ye. Panarin, N. Ye. Svavil'nyi, and A. I. Khominich, Prystriy dlya Vakuumnoho Syntezu Vuhletsevykh Nanostruktur [Device for Vacuum Synthesis of Carbon Nanostructures], Patent of Ukraine No. 98909 (Published 2012) (in Ukrainian).
  6. V. Ye. Panarin, M. Ye. Svavil'nyi, and V. O. Moskalyuk, Nanosistemi, Nanomateriali, Nanotehnologii, 2: 321 (2020) (in Ukrainian). Crossref
  7. M. Hiramatsu, H. Kondo, and M. Hori, Graphene Nanowalls (Ed. J. R. Gong) (China: National Center for Nanoscience and Technology: 2013), p. 235. Crossref
  8. Nauchnye Osnovy Kataliticheskoy Konversii Uglevodorodov [Scientific Basis for Catalytic Conversion of Hydrocarbons] (Ed. V. V. Veselov) (Kyiv: Naukova Dumka: 1977) (in Russian).
  9. L. I. Romanyuk and N. Ye. Svavil'nyi, Zhurnal Tekhnicheskoy Fiziki, 50: 968 (1980) (in Russian)
  10. A. Von Engel, Ionized Gases (New York: American Institute of Physics, Melville: 1994).
  11. M. D. Gabovich, Fizika i Tekhnika Plazmennykh Istochnikov Ionov [Physics and Technology of Plasma Ion Sources] (Moscow: Atomizdat: 1972) (in Russian).
  12. M. Ye. Svavilnyi and A. A. Shkola, Aspects Min. Miner. Sci., 8, Iss. 3: 942 (2022). Crossref