Powder Welding Wire of Cantor's High-Entropy Alloying System for Surfacing

A. V. Zavdoveev$^{1}$, O. A. Gaivoronsky$^{1}$, V. D. Poznyakov$^{1}$, A. V. Klapatyuk$^{1}$, D. V. Vedel$^{2}$, T. Baudin$^{3}$, O. A. Los$^{1}$, R. A. Kozin$^{1}$, M. A. Skoryk$^{4}$

$^{1}$E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine
$^{2}$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine
$^{3}$Institut de chimie moléculaire et des matériaux d’Orsay, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
$^{4}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 25.05.2022; final version - 28.06.2022. Download: PDF

High-entropy alloys, consisting of five or more basic elements in equimolar ratios, such alloys may contain basic elements with a concentration of each element from 5 to 35 at.%. This leads to the creation of many alloy systems with simple crystalline structures and extraordinary properties. Such alloys have great practical value and are usually made by powder metallurgy, conventional casting, etc. These metallurgical processes are mainly used to create details of simple geometry with the need for further machining. The paper proposes a new method of obtaining a high-entropy alloy of the Cantor alloying system by means of wire arc additive manufacturing (WAAM) using metal powder cored wire. Features of manufacturing high-entropy alloys by alternative methods are considered, and the advantages of using WAAM are emphasized.

Key words: high-entropy alloy, wire arc additive manufacturing, metal powder cored wire, phase composition, melting.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i08/1025.html

DOI: https://doi.org/10.15407/mfint.44.08.1025

PACS: 07.30.-t, 64.75.Nx, 68.37.Hk, 81.05.Bx, 81.05.-t, 81.40.-z

Citation: A. V. Zavdoveev, O. A. Gaivoronsky, V. D. Poznyakov, A. V. Klapatyuk, D. V. Vedel, T. Baudin, O. A. Los, R. A. Kozin, and M. A. Skoryk, Powder Welding Wire of Cantor's High-Entropy Alloying System for Surfacing, Metallofiz. Noveishie Tekhnol., 44, No. 8: 1025—1035 (2022) (in Ukrainian)


REFERENCES
  1. K. Wu, N. Ding, T. Yin, M. Zeng, and Z. Liang, J. Manuf. Process., 35: 728 (2018). Crossref
  2. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Mater. Sci. Eng. A, 375-377: 213 (2004). Crossref
  3. E. Johnson, Nucl. Instrum. Methods Phys. Res., Sect. B, 42, Iss. 3: 403 (1989). Crossref
  4. Lin Wang, Chuansong Wu, Ji Chen, Jinqiang Gao, J. Manuf. Process., 56: 1193 (2020). Crossref
  5. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Adv. Eng. Mater., 6: 299 (2004). Crossref
  6. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang, JOM, 66: 1984 (2014). Crossref
  7. C. L. Tracy, S. Park, D. R. Rittman, S. J. Zinkle, H. Bei, M. Lang, R. C. Ewing, and W. L. Mao, Nat. Commun., 8: 15634 (2017). Crossref
  8. W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, and Z. Fu, Intermetallics, 56: 24 (2015). Crossref
  9. B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, Science, 345, No. 6201: 1153 (2014). Crossref
  10. Z. Tang, T. Yuan, C.-W. Tsai, J.-W. Yeh, C. D. Lundin, and P. K. Liaw, Acta Mater., 99: 247 (2015). Crossref
  11. Chi-San Chen, Chih-Chao Yang, Jien-Wei Yeh, and Chin-Te Huang, Ultra-hard Composite Material and Method for Manufacturing the Same, Patent of USA No. US2009/0074604 A1 (Published March 19, 2009).
  12. Yu. M. Lytvynenko, A. O. Perekos, V. P. Zaluts'kyy, V. M. Nadutov, and S. Yu. Makarenko, Sposib Oderzhannya Vysokoentropiynoho Splavu [The Method of Manufacturing a High-Entropy Alloy], Utility Model Patent No. 97118 (Published October 29, 2014) (in Ukrainian).
  13. FeCoCrNi Series High-Entropy Alloy Selective Laser Melting In-Situ Additive Manufacturing Method and Product, Patent of China CN111085689A (Published October 23, 2018).
  14. Method for Preparing Ni-Cr-Co-Fe-Mn High-Entropy Alloy by Electron Beam Melting, Homogenization and Purification, Patent of China CN110423904B (Published July 14, 2020).
  15. M. R. U. Ahsan, G.-J. Seo, X. Fan, P. K. Liaw, S. Motaman, C. Haase, and D. B. Kim, J. Manuf. Process., 68: 1314 (2021). Crossref
  16. Q. Shen, X. Kong, and X. Chen, J. Mater. Sci. Technol., 74: 136 (2021). Crossref
  17. A. V. Zavdovyeyev, O. A. Hayvorons'kyy, V. D. Poznyakov, and A. V. Klapatyuk, Sposib Vyhotovlennya Vysokoentropiynoho Splavu z Vykorystannyam Adytyvnykh Tekhnolohiy Poroshkovym Zvaryuval'nym Drotom [The Method of Manufacturing a High-Entropy Alloy using Additive Technologies with a Powder Welding Wire], Application for a Patent of Ukraine No. A202201578 (Submit May 17, 2022) (in Ukrainian).
  18. R. L. Loftness, A Vapor Pressure Chart for Metals (North American Aviation Inc.: 1951). Crossref
  19. Handbook of the Physicochemical Properties of the Elements (Ed. G. V. Samsonov) (Springer: 1968).
  20. A. Ferrari and F. Körmann, Appl. Surf. Sci., 533: 147471 (2020). Crossref
  21. R. Ohno, Trans. Iron Steel Inst. Jpn., 17: 732 (1977). Crossref
  22. Refractory High-Entropy Alloy Stranded Wire Material, Application and Preparation Method, Patent China CN110538945B (Published September 19, 2019).