Properties of Surfaces Parts From X10CrNiTi18-10 Steel Operating in Conditions of Radiation Exposure Retailored by Electrospark Alloying. Pt. 1. Features of Topography and Mechanical Properties of Coatings

N. V. Tarelnyk

Sumy National Agrarian University, 160 Gerasym Kondratiev Str., UA-40021 Sumy, Ukraine

Received: 28.05.2022; final version - 11.07.2022. Download: PDF

The article presents the results of research on a new method of restoration by means of electrospark alloying (ESA) of X10CrNiTi18-10 steel details, which operates under radiation conditions. The method can be used to repair machine details of nuclear power plants. The technology includes coating the worn surface of the detail with an ESA electrode, which is made of steel X10CrNiTi18-10 or nickel, which does not contain special additives of cobalt and other elements that form long-lived isotopes in the active working environment. ESA is carried out in two stages. Before the first stage, a layer of graphite electrode coating is applied to the worn steel surface by the ESA method—a tool with a discharge energy $Wp$ = 0.02 J and a productivity 0.3 sm$^{2}$/min. At ESA by the electrode tool from steel X10CrNiTi18-10 the first and second stages are carried out, accordingly at $Wp$ = 0.20 J with productivity 1.6 sm$^{2}$/min; and $Wp$ = 0.55 J with a productivity 2.5 sm$^{2}$/min. As a result, the coating thickness is $\Delta H$ = 0.19 mm, the continuity is $S$ = 100% and the roughness is $Rz$ = 57 $\mu$m. During ESA the first and second stages are carried out by nickel electrode tool respectively at $Wp$ = 0.55 J with a capacity 2.5 sm$^{2}$/min and $Wp$ = 0.90 J with a capacity 3.4 sm$^{2}$/min. As a result, $\Delta H$ = 0.20 mm, $S$ = 100 % and $Rz$ = 38 $\mu$m. The increase in discharge energy in ESA is accompanied by a decrease in yield strength and tensile strength and an increase in the relative elongation and relative narrowing of the sample. During the ESA of the sample with $Wp$ = 0.90 J, compared with the undoped sample, the yield strength and tensile strength decrease with alloying by steel X10CrNiTi18-10, respectively, to 11.7% and 8.3%, and the relative elongation and relative narrowing increases, respectively, to 15% and 14.7%. During the ESA by nickel yield strength and tensile strength decreases to 13.3% and 8.6%, respectively, and the relative elongation and relative narrowing increase to 14.7% and 16.7%, respectively.

Key words: electrospark alloying, restoration, electrode material, graphite, steel, layer thickness, roughness, continuity, mechanical properties.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i08/1037.html

DOI: https://doi.org/10.15407/mfint.44.08.1037

PACS: 62.20.Qp, 68.35.Ct, 68.35.Gy, 68.55.J-, 81.65.Lp, 81.40.Pq

Citation: N. V. Tarelnyk, Properties of Surfaces Parts From X10CrNiTi18-10 Steel Operating in Conditions of Radiation Exposure Retailored by Electrospark Alloying. Pt. 1. Features of Topography and Mechanical Properties of Coatings, Metallofiz. Noveishie Tekhnol., 44, No. 8: 1037—1058 (2022) (in Ukrainian)


REFERENCES
  1. N. V. Tarel'nyk, Naukovyy Visnyk Ivano-Frankivs'koho Natsional'noho Tekhnichnoho Universytetu Nafty i Hazu, No. 2: 32 (2021) (in Ukrainian).
  2. I. Kuric, M. Kandera, J. Klarák, V. Ivanov, and D. Więcek, Advanced Manufacturing Processes (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, M. Edl, I. Kuric, I. Pavlenko, and P. Dasic) (Springer: 2020), p. 148. Crossref
  3. A. Zahorulko, C. Kundera, and S. Hudkov, IOP Conference Series: Materials Science and Engineering, 233: 012039 (2017). Crossref
  4. A. Zahorulko, Sealing Technology, 2015, Iss. 8: 7 (2015). Crossref
  5. A. Kotliar, Y. Basova, V. Ivanov, O. Murzabulatova, S. Vasyltsova, M. Litvynenko, and O. Zinchenko, Management and Production Engineering Review, 11, No. 1: 52 (2020). Crossref
  6. V. Ivanov, I. Dehtiarov, Y. Denysenko, N. Malovana, and N. Martynova, Diagnostyka, 19, No. 3: 3, (2018). Crossref
  7. V. Ivanov, I. Dehtiarov, I. Pavlenko, M. Kosov, and M. Hatala, Advances in Design, Simulation and Manufacturing II (Eds. V. Ivanov, J. Trojanowska, J. Machado, O. Liaposhchenko, J. Zajac, I. Pavlenko, M. Edl, and D. Perakovic) (Springer: 2019), p. 114. Crossref
  8. V. Ivanov, I. Pavlenko, I. Kuric, and M. Kosov, Industry 4.0: Trends in Management of Intelligent Manufacturing Systems (Eds. L. Knapčíková and M. Balog) (Springer: 2019), p. 133. Crossref
  9. S. Pylypaka, T. Zaharova, O. Zalevska, D. Kozlov, and O. Podliniaieva, Advanced Manufacturing Processes (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, M. Edl, I. Kuric, I. Pavlenko, and P. Dasic) (Springer: 2020), p. 582. Crossref
  10. S. Pylypaka, T. M. Volina, M. Mukvich, G. Efremova, and O. Kozlova, Advances in Design, Simulation and Manufacturing III (Eds. V. Ivanov, I. Pavlenko, O. Liaposhchenko, J. Machado, and M. Edl) (Springer: 2020), p. 63. Crossref
  11. S. Pylypaka, V. Nesvidomin, T. Volina, L. Sirykh, and L. Ivashyna, Inmateh Agricultural Engineering, 62, No. 3: 79 (2020). Crossref
  12. S. Pylypaka, T. Volina, I. Hryshchenko, I. Rybenko, and N. Sydorenko, Advanced Manufacturing Processes II (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, A. Grabchenko, I. Pavlenko, M. Edl, I. Kuric, and P. Dasic) (Springer: 2021), p. 196. Crossref
  13. T. Volina, S. Pylypaka, A. Rebrii, O. Pavlenko, Y. Kremets, Advanced Manufacturing Processes II (Eds. V. Tonkonogyi, V. Ivanov, J. Trojanowska, G. Oborskyi, A. Grabchenko, I. Pavlenko, M. Edl, I. Kuric, and P. Dasic) (Springer: 2021), p. 237. Crossref
  14. T. Volina, S. Pylypaka, V. Nesvidomin, A. Pavlov, and S. Dranovska, Eastern-European J. Enterprise Technologies, 3, No. 7: 45 (2021). Crossref
  15. S. Pylypaka, T. Volina, A. Nesvidomin, I. Zakharova, and A. Rebrii, Advances in Design, Simulation and Manufacturing IV (Eds. V. Ivanov, I. Pavlenko, O. Liaposhchenko, J. Machado, and M. Edl) (Springer: 2021), p. 156. Crossref
  16. A. A. Parkin, S. S. Zhatkin, and A. B. Semin, Izvestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk, 18, No. 4 (2): 362 (2016) (in Russian).
  17. A. Panasyuk, O. Umanskyi, M. Storozhenko, and V. Akopyan, Key Engineering Materials, 527: 9 (2013). Crossref
  18. O. Umanskyi, M. Storozhenko, M. Antonov, O. Terentjev, O. Koval, and D. Goljandin, Key Engineering Materials, 604: 16 (2019). Crossref
  19. M. S. Storozhenko, A. P. Umanskii, A. E. Terentiev, and I. M. Zakiev, Powder Metallurgy and Metal Ceramics, 56, No. 1-2: 60 (2017). Crossref
  20. M. Storozhenko, A. Umanskii, V. A. Lavrenko, S. S. Chuprov, and A. D. Kostenko, Powder Metallurgy and Metal Ceramics, 50, No. 11-12: 719 (2012). Crossref
  21. O. Umanskyi, M. Storozhenko, V. Krasovskyi, O. Terentjev, and M. Antonov, J. Alloys Compd., 778: 15 (2019). Crossref
  22. N. Radek and K. Bartkowiak, Physics Procedia A, 5: 417 (2010). Crossref
  23. V. G. Smelov, A. V. Sotov, and S. A. Kosirev, ARPN J. Eng. Applied Sci., 9, No. 10: 1854 (2014).
  24. O. Gaponova, C. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, M. Dovzhyk, A. Belous, and O. Vasilenko, Advances in Thin Films, Nanostructured Materials, and Coatings (Eds. A. D. Pogrebnjak and V. Novosad) (Springer: 2019), p. 249. Crossref
  25. V. Tarelnyk, I. Konoplianchenko, O. Gaponova, N. V. Tarelnyk, V. S. Martsynkovskyy, B. O. Sarzhanov, O. A. Sarzhanov, and B. Antoszewski, Powder Metall. Met. Ceram., 58: 703 (2020). Crossref
  26. A. Kovalchenko, O. Ajayi, A. Erdemir, G. Fenske, and I. Etsion, Tribol. International, 38: 219 (2005). Crossref
  27. A. D. Pogrebnyak, A. M. Mahmud, I. T. Karasha, G. V. Kirik, R. Y. Tkachenko, and A. P. Sypylenko, J. Nano-Electron. Phys., 3, No. 4: 73 (2011).
  28. A. D. Pogrebnjak, M. M. Danilionok, V. V. Uglov, N. K. Erdybaeva, G. V. Kirik, S. N. Dub, V. S. Rusakov, A. P. Shypylenko, P. V. Zukovski, and Y. Zh. Tuleushev, Vacuum, 83, Suppl. 1: S235 (2009). Crossref
  29. A. D. Pogrebnyak, A. P. Shpak, V. M. Beresnev, G. V. Kirik, D. A. Kolesnikov, F. F. Komarov, P. Konarski, N. A. Makhmudov, M. V. Kaverin and V. V. Grudnitskii, Tech. Phys. Lett., 37: 636 (2011). Crossref
  30. Shu-Hung Yeh, Liu-Ho Chiu, and Heng Chang, Engineering, 3, No. 9: 942 (2011).
  31. S. Ben Slima, Materials Sciences and Applications, 3, Iss. 9: 640 (2012).
  32. C. M. Suh, J. K. Hwang, K. S. Son, and H. K. Jang, Mater. Sci. Eng. A, 392, No. 1-2: 31 (2005). Crossref
  33. J. Baranowska and S. E. Franklin, Wear, 264, No. 9-10: 899 (2008). Crossref
  34. A. A. Ishchenko, Tekhnologicheskie Osnovy Vosstanovleniya Promyshlennogo Oborudovaniya Sovremennymi Polimernymi Materialami [Technological Foundations for the Restoration of Industrial Equipment with Modern Polymeric Materials] (PGTU: 2007) (in Russian).
  35. I. O. Mikul'onok and O. L. Sokol's'kyy, Polimerni Materialy i Vyroby z Nykh (Oderzhannya, Pereroblennya, Vlastyvosti) [Polymer Materials and Poducts from Them (Production, Processing, Properties)] (Kyiv: Politekhnika: 2015) (in Ukrainian).
  36. Yu. N. Anisimov and S. N. Savin, Zhurn. Prikl. Khimii, 75, No. 6: 1015 (2002) (in Russian). Crossref
  37. Yu. A. Anisimov and Yu. N. Anisimov, Plasticheskie Massy, No. 2: 47 (2007) (in Russian).
  38. O. L. Haydamak, V. A. Matviychuk, and Yu. S. Kucherenko, Tekhnika, Enerhetyka, Transport APK, No. 2 (109): 105 (2020) (in Russian). Crossref
  39. V. Tarelnyk, V. Martsynkovskyy, A. Sarzhanov, A. Pavlov, V. Gerasimenko, and B. Sarzhanov, IOP Conference Series: Materials Science and Engineering, 233: 012050 (2017). Crossref
  40. V. V. Bryukhovetsky, V. F. KLepikov, V. V. Lytvynenko, D. E. Myla, V. P. Poyda, A. V. Poyda, V. T. Uvarov, Yu. F. Lonin, and A. G. Ponomarev, Nucl. Instrum. Methods Phys. Res. B, 499: 25 (2021). Crossref
  41. S. E. Donets, V. F. Klepikov, V. V. Lytvynenko, Yu. F. Lonin, A. G. Ponomarev, O. A. Startsev, and V. T. Uvarov, Problems of Atomic Science and Technology, No. 4: 302 (2015).
  42. V. F. Klepikov, V. V. Lytvynenko, Yu. F. Lonin, A. G. Ponomarev, O. G. Tolstolutskiy, V. V. Uvarov, and V. T. Uvarov, Problems of Atomic Science and Technology, No. 1: 119 (2009).
  43. A. G. Kobets, P. R. Horodek, O. A. Startsev, V. V. Lytvynenko, Yu. F. Lonin, A. G. Ponomarev, and V. T. Uvarov, Surf. Eng. Applied Electrochemistry, 51: 478 (2015). Crossref
  44. Nakaz Derzhavnoyi Inspektsiyi Yadernoho Rehulyuvannya Ukrayiny vid 04.08.2020 No. 319 'Pro Zatverdzhennya Zahal'nykh Vymoh Bezpeky do Ulashtuvannya ta Ekspluatatsiyi Obladnannya y Truboprovodiv Atomnykh Stantsiy» [Order of the State Inspection of Nuclear Regulation of Ukraine dated 04.08.2020 No. 319 'On Approval of General Safety Requirements for the Installation and Operation of Equipment and Pipelines of Nuclear Power Plants'] (in Ukrainian).
  45. F. I. Panteleenko, V. P. Lyalyakin, V. P. Ivanov, and V. M. Konstantinov, Vosstanovlenie Detaley Mashin [Reduction of Machine Parts] (Ed. V. P. Ivanov) (Moscow: Mashinostroenie: 2003) (in Russian).
  46. R. E. Esenberlin, Vosstanovlenie Avtomobil'nykh Detaley Svarkoy, Naplavkoy i Paykoy [Reduction of Automotive Parts by Welding, Surfacing and Soldering] (Moscow: Transport: 1994) (in Russian).
  47. V. A. Korotkov, I. D. Mikhaylov, A. M. Vesnin, and A. S. Zotov, Sborka v Mashinostroenii, Priborostroenii, 10: 33 (2008) (in Russian).
  48. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Y. Filonenko, Procedia Engineering, 39: 148 (2012). Crossref
  49. V. B. Tarelnyk, A. V. Paustovskii, Y. G. Tkachenko, E. V. Konoplianchenko, V. S. Martsynkovskyi, and B. Antoszewski, Powder Metallurgy and Metal Ceramics, 55: 585 (2017). Crossref
  50. V. Martsynkovskyy, V. Tarelnyk, Ye. Konoplianchenko, O. Gaponova, and M. Dumanchuk, Advances in Design, Simulation and Manufacturing II (Eds. V. Ivanov, J. Trojanowska, J. Machado, O. Liaposhchenko, J. Zajac, I. Pavlenko, M. Edl, and D. Perakovic) (Springer: 2019), p. 216. Crossref
  51. V. Tarelnyk, V. Martsynkovskyy, and A. Dziuba, Applied Mechanics and Materials, 630: 388 (2014). Crossref
  52. V. Tarelnyk and V. Martsynkovskyy, Applied Mechanics and Materials, 630: 397 (2014). Crossref
  53. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, I. Konoplianchenko, M. Dovzyk, N. Tarelnyk, and S. Gorovoy, IOP Conference Series: Materials Science and Engineering, 233: 012049 (2017). Crossref
  54. V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, I. Konoplianchenko, A. Belous, V. Gerasimenko, and M. Zakharov, IOP Conference Series: Materials Science and Engineering, 233: 012048 (2017). Crossref
  55. V. B. Tarel'nik, A. V. Paustovskii, Y. G. Tkachenko, V. S. Martsinkovskii, E. V. Konoplyanchenko, and K. Antoshevskii, Surf. Eng. Applied Electrochemistry, 53: 258 (2017). Crossref
  56. V. B. Tarelnyk, O. P. Gaponova, V. B. Loboda, E. V. Konoplyanchenko, V. S. Martsinkovskii, Yu. I. Semirnenko, N. V. Tarelnyk, M. A. Mikulina, and B. A. Sarzhanov, Surf. Eng. Applied Electrochemistry, 57: 173 (2021). Crossref
  57. V. B. Tarelnyk, O. P. Gaponova, Ye. V. Konoplianchenko, V. S. Martsynkovskyy, N. V. Tarelnyk, and O. O. Vasylenko, Metallofiz. Noveishie Tekhnol., 41, No. 1: 47 (2019). Crossref
  58. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petroleum Eng., 53: 114 (2017). Crossref
  59. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petroleum Eng., 53: 385 (2017). Crossref
  60. V. B. Tarel'nik, E. V. Konoplyanchenko, P. V. Kosenko, and V. S. Martsinkovskii, Chem. Petroleum Eng., 53: 540 (2017). Crossref
  61. B. O. Sarzhanov, Sposib Pidvyshchennya Yakosti Vidnovlenykh Pokryt' Metalevykh Detaley Metodom Elektroeroziynoho Lehuvannya [The Method of Improving the Quality of Restored Coatings of Metal Parts by the Method of Electroerosion Alloying], Utility Model Patent of Ukraine No. u201909758 (Published November 11, 2019) (in Ukrainian).
  62. Yu. F. Balandin, I. B. Gorynin, Yu. I. Zvezdin, and B. G. Mirkov, Konstruktsionnye Materialy AES [Constructional Materials of NPP] (Moscow: Energoatomizdat: 1984) (in Russian).
  63. E. Mayer, Tortsovye Uplotneniya [Front Seals] (Moscow: Mashinostroenie: 1978) (in Russian).
  64. A. S. Shelegov, S. T. Leskin, and V. I. Slobodchuk, Fizicheskie Osobennosti i Konstruktsiya Reaktora VVER-1000 [Physical Features and Design of VVER-1000 Reactor] (Moscow: NIYaU 'MIFI': 2011) (in Russian).
  65. E. M. Prokhorenko, V. Klepikov, V. V. Lytvynenko, A. Zakharchenko, and M. Khazhmuradov, Problems of Atomic Science and Technology, No. 2:193 (2015).
  66. N. I. Lazarenko, Elektroiskrovoe Legirovanie Metallicheskikh Poverkhnostey [Electrospark Alloying of Metal Surfaces] (Moscow: Mashinostroenie: 1976) (in Russian).
  67. A. E. Gitlevich, V. V. Mikhaylov, N. Ya. Parkanskiy, and V. M. Revutskiy, Elektroiskrovoe Legirovanie Metallicheskikh Poverkhnostey [Electrospark Alloying of Metal Surfaces] (Chișinău: Shtiintsa: 1985) (in Russian).
  68. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petroleum Eng., 53: 266 (2017). Crossref
  69. B. Antoszewski, O. P. Gaponova, V. B. Tarelnyk, O. M. Myslyvchenko, P. Kurp, T. I. Zhylenko, and I. Konoplianchenko, Materials, 14, Iss. 4: 739 (2021). Crossref
  70. N. V. Tarel'nyk, Sposib Vidnovlennya Znoshenykh Poverkhon' Stal'nykh Detaley Obladnannya, yake Pidlyahaye Radiatsiynomu Oprominyuvannyu [The Method of Reduction of Worn Surfaces of Steel Parts of Equipment Subject to Radiation Exposure], Patent of Ukraine No. 150213 (Published January 13, 2022) (in Ukrainian).