Properties of Surfaces Parts from X10CrNiTi18-10 Steel Operating in Conditions of Radiation Exposure Retailored by Electrospark Alloying. Pt. 2. Features of the Structural State of the Retailored Surfaces

O. P. Gaponova$^{1}$, N. V. Tarelnyk$^{2}$

$^{1}$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine
$^{2}$Sumy National Agrarian University, 160 Gerasym Kondratiev Str., UA-40021 Sumy, Ukraine

Received: 28.05.2022; final version - 11.07.2022. Download: PDF

In article we present the results of studies of the structural state of coatings formed by the method of electrospark alloying at the discharge energy $Wp$ = 0.13, 0.52 and 0.9 J by anodes from nickel and stainless steel X10CrNiTi18-10 on the cathode surface from X10CrNiTi18-10 steel. Anode materials, such as nickel and X10CrNiTi18-10 steel are recommended as materials, which is advisable to use for restoring the surfaces of parts from X10CrNiTi18-10 steel operating in conditions of radiation exposure. Metallographic analysis of the formed coatings showed that their microstructure consists of 3 zones: 1) ‘white layer’ is the layer that cannot be etched with conventional reagents, 2) transition zone or diffuse zone, 3) base metal. Using nickel and steel X10CrNiTi18-10 with increasing discharge energy, the thickness of the hardened layer, microhardness, continuity and thickness of the white layer, as well as the surface roughness are increased. Replacing the nickel anode with steel X10CrNiTi18-10 surface roughness is increased and the thickness of the hardened layer is decreased.

Key words: electrospark alloying, nickel, steel, metallographic analysis, structure, layer thickness, microhardness, roughness, continuity.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i09/1103.html

DOI: https://doi.org/10.15407/mfint.44.09.1103

PACS: 62.20.Qp, 68.35.Ct, 68.35.Gy, 68.55.J-, 81.40.Pq, 81.65.Lp

Citation: O. P. Gaponova and N. V. Tarelnyk, Properties of Surfaces Parts from X10CrNiTi18-10 Steel Operating in Conditions of Radiation Exposure Retailored by Electrospark Alloying. Pt. 2. Features of the Structural State of the Retailored Surfaces, Metallofiz. Noveishie Tekhnol., 44, No. 9: 1103—1115 (2022) (in Ukrainian)


REFERENCES
  1. N. V. Tarelnyk, Metallofiz. Noveishie Tekhnol., 44, No. 8: 1037 (2022) (in Ukrainian).
  2. Tekhnichne Obsluhovuvannya i Remont. Pravyla Orhanizatsiyi Tekhnichnoho Obsluhovuvannya i Remontu Obladnannya Enerhoblokiv ta Zahal'nostantsiynoho Obladnannya Atomnykh Elektrostantsiy. SOU NAEK 033:2021 [Technical Maintenance and Repair. Rules for the Organization of Technical Maintenance and Repair of Power Unit Equipment and General Plant Equipment of Nuclear Power Plants. SOU NAEC 033:2021] (Kyiv: NAEK 'Enerhoatom': 2021) (in Ukrainian).
  3. Rozporyadzhennya Kabinetu Ministriv Ukrayiny vid 18 Serpnya 2017 r. No. 605-r. 'Pro Skhvalennya Enerhetychnoyi Stratehiyi Ukrayiny na Period do 2035 Roku «Bezpeka, Enerhoefektyvnist', Konkurentospromozhnist' [Decree of the Cabinet of Ministers of Ukraine Dated August 18, 2017 No. 605-r. 'On the Approval of the Energy Strategy of Ukraine for the Period until 2035 'Safety, Energy Efficiency, Competitiveness'] (in Ukrainian).
  4. Otchet po Analizu Bezopasnosti. Tekhnicheskoe Obosnovanie Bezopasnosti. Blok No. 1. Yuzhno-Ukrainskaya AES. 23.1.39.OB.05.01-05 [Security Analysis Report. Technical Justification for Safety. Block No. 1. Yuzhnoukrainsk NPP. 23.1.39.OB.05.01-05] (NAEK «Energoatom»: 2018) (in Russian).
  5. P. M. Bazhin and A. M. Stopin, Stanochnyy Park, No. 10 (55), (2008) (in Russian).
  6. A. V. Kozyr', L. A. Konevtsov, S. V. Konovalov, S. V. Kovalenko, and V. I. Ivashchenko, Pis'ma o Materialakh, 8, No. 2: 140 (2018) (in Russian). Crossref
  7. B. O. Sarzhanov, Naukovi Notatky, No. 68: 96 (2019) (in Ukrainian).
  8. B. O. Sarzhanov, Sposib Pidvyshchennya Yakosti Vidnovlenykh Pokryt' Metalevykh Detaley Metodom Elektroeroziynoho Lehuvannya [The Method of Improving the Quality of Restored Coatings of Metal Parts by the Method of Electroerosion Aloying], Patent of Ukraine No. 138052 (Published November 11, 2019) (in Ukrainian).
  9. V. F. Mazanko, E. N. Khranovskaya, E. V. Yvashchenko, and S. P. Vorona, Dopovidi Natsional'noyi Akademiyi Nauk Ukrayiny, No. 8: 96 (2007) (in Ukrainian).
  10. K. Sudzuki, Kh. Fudzimori, and K. Khasimoto, Amorfnye Metally [Amorphous Metals] (Ed. Ts. Masumoto) (Moscow: Metallurgiya: 1987) (in Russian).
  11. M. A. Penyaz', E. A. Krasnova, and A. A. Ivannikov, Proc. Int. Young Scientific Forum 'LOMONOSOV-2020' (2020) (in Russian).
  12. G. I. Pashkova, Visnyk Kharkivs'koho Natsional'noho Avtomobil'no-dorozhn'oho Universytetu, No. 33 (2006) (in Russian).
  13. V. K. Lobanov and G. I. Pashkova, Mekhanika ta Mashynobuduvannya, No. 1: 32 (2004) (in Russian).
  14. V. B. Tarel'nik, O. P. Gaponova , E. V. Konoplyanchenko, N. S. Evtushenko, and V. O. Gerasimenko, Metallofiz. Noveishie Tekhnol., 40, No. 6: 795 (2018) (in Russian). Crossref
  15. V. B. Tarel'nik, O. P. Gaponova, E. V. Konoplyanchenko, V. S. Martsinkovskiy, N. V. Tarel'nik, and O. A. Vasilenko, Metallofiz. Noveishie Tekhnol., 41, No. 1: 47 (2019) (in Russian). Crossref
  16. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petroleum Eng., 53: 266 (2017). Crossref
  17. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petroleum Eng., 53: 385 (2017). Crossref
  18. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petroleum Eng., 53: 114 (2017). Crossref
  19. V. Martsynkovskyy, V. Tarelnyk, Ye. Konoplianchenko, O. Gaponova, and M. Dumanchuk, Advances in Design, Simulation and Manufacturing II (Eds. V. Ivanov, J. Trojanowska, J. Machado, O. Liaposhchenko, J. Zajac, I. Pavlenko, M. Edl, and D. Perakovic) (Springer: 2019), p. 216. Crossref
  20. O. Gaponova, C. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, Ie. Konoplianchenko, M. Dovzhyk, A. Belous, and O. Vasilenko, Advances in Thin Films, Nanostructured Materials, and Coatings (Eds. A. D. Pogrebnjak and V. Novosad) (Springer: 2019), p. 249. Crossref