Elastic, Mechanical and Thermophysical Properties of Hexagonal Nanostructured Cr$_{2}$N Compound

Aadesh K. Prajapati, Navin Chaurasiya, Sachin Rai, Pramod K. Yadawa

Department of Physics, Institute of Physical Sciences for Study and Research, V. B. S. Purvanchal University, 222003 Jaunpur, India

Received: 05.12.2021; final version - 04.08.2022. Download: PDF

The characteristic features of hexagonally Cr$_{2}$N compound is considered by the theoretical valuation of elastic, mechanical, ultrasonic and thermophysical properties. Initially, the higher order elastic constants (HOECs) of nanostructured Cr$_{2}$N material are computed using the Lennard-Jones many body interactions potential approach. With the help of the HOECs such as modulus like Young’s, bulk and anisotropic parameters are evaluated for elastic and mechanical characterization. Temperature dependent ultrasonic velocities, Debye average velocity and thermal relaxation time are also evaluated along orientation dependent. The ultrasonic attenuation (UA) of longitudinal and shear wave due to phonon–phonon (p–p) interaction and thermoelastic relaxation mechanism are investigated for this thin film. The thermal conductivity is a principal contributor to the behaviour of UA due to p–p interactions. Mechanical and thermal properties of the nanostructured Cr$_{2}$N are superior at low temperature.

Key words: novel hard chromium-based materials, nanostructured compound, thermal conductivity, elastic properties, ultrasonic properties.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i09/1147.html

DOI: https://doi.org/10.15407/mfint.44.09.1147

PACS: 43.35.Cg, 62.20.Dc, 63.20.Kr

Citation: Aadesh K. Prajapati, Navin Chaurasiya, Sachin Rai, and Pramod K. Yadawa, Elastic, Mechanical and Thermophysical Properties of Hexagonal Nanostructured Cr$_{2}$N Compound, Metallofiz. Noveishie Tekhnol., 44, No. 9: 1147—1161 (2022)


REFERENCES
  1. S. Williams, J. L. Tipper, E. Ingham, M. H. Stone, and J. Fisher, Proc. Inst. Mech. Eng., 217: 155 (2003). Crossref
  2. J. Lin, Z. L. Wu, X. H. Zhang, B. Mishra, J. J. Moore, and W. D. Sproul, Thin Solid Films, 517: 1887 (2009). Crossref
  3. Z. B. Qi, B. Liu, Z. T. Wu, F. P. Zhu, Z. C. Wang, and C. H. Wu, Thin Solid Films, 544: 515 (2013). Crossref
  4. C. A. Huang, U. W. Lieu, and C. H. Chuang, Surf. Coat. Technol., 203: 2921 (2009). Crossref
  5. R. Bayón, A. Igartua, X. Fernández, R. Martínez, R. J. Rodriguez, and J. A. García, Analytical and Bioanalytical Chemistry, 396: 2855 (2009). Crossref
  6. S. F. Zhu, L. Chen, Y. P. Wu, T. W. Liu, K. Tang, and Q. Wei, Corros. Sci., 82: 420 (2014). Crossref
  7. P. Eklund, S. Kerdsongpanya, and B. Alling, J. Mater. Chem. C, 4: 3905 (2016). Crossref
  8. B. W. Karr, I. Petrov, D. G. Cahill, and J. E. Greene, Appl. Phys. Lett., 70: 1703 (1997). Crossref
  9. S. Logothetidis, P. Patsalas, K. Sarakinos, C. Charitidis, and C. Metaxa, Surf. Coat. Technol., 637: 180 (2004). Crossref
  10. M. Sikkens, A. M. T. Van Heereveld, E. Vogelzang, and C. A. Boose, Thin Solid Films, 108: 167 (2020).
  11. D. Gall, C. S. Shin, R. T. Haasch, I. Petrov, and J. E. Greene, J. Appl. Phys., 91: 5882 (2002). Crossref
  12. Z. Zhou, S. Luo, Y. Wang, Z. Ai, C. Liu, and D. Wang, Thin Solid Films, 519: 989 (2011). Crossref
  13. P. K. Yadawa, Pramana, 76, No. 4: 613 (2011). Crossref
  14. D. K. Pandey, P. K. Yadawa, and R. R. Yadav, Mater. Lett., 61: 5194 (2007). Crossref
  15. W. Voigt, Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik) (Springer: 1966). Crossref
  16. A. Reuss, J. Applied Mathematics and Mechanics, 9, No. 1: 49 (1929). Crossref
  17. R. Hill, Phys. Soc. A, 65: 349 (1952). Crossref
  18. N. Turkdal, E. Deligoz, H. Ozisik, and H. B. Ozisik, Phase Transitions, 90: 598 (2017). Crossref
  19. P. F. Weck, E. Kim, V. Tikare, and J. A. Mitchell, Dalton Trans., 44: 18769 (2015). Crossref
  20. D. Singh, D. K. Pandey, P. K. Yadawa, and A. K. Yadav, Cryogenics, 49: 12 (2009). Crossref
  21. S. P. Singh, P. K. Yadawa, P. K. Dhawan, A. K. Verma, and R. R. Yadav, Cryogenics, 100: 105 (2019). Crossref
  22. D. Singh, P. K. Yadawa, and S. K. Sahu, Cryogenics, 50: 476 (2010). Crossref
  23. G. Alexander, R. A. Kvashnin, I. A. Oganov, and A. Z. Samtsevich, J. Phys. Chem. Lett., 8, No. 4: 755 (2017). Crossref
  24. N. Yadav, S. P. Singh, A. K. Maddheshiya, P. K. Yadawa, and R. R. Yadav, Phase Transitions, 93: 883 (2020). Crossref
  25. C. P. Yadav, D. K. Pandey, and D. Singh, Indian J. Phys., 93: 1147 (2019). Crossref
  26. A. F. Goncharov, M. Gauthier, D. Antonangeli, S. Ayrinhac, F. Decremps, M. Morand, A. Grechnev, S. M. Tretyak, and A. Freiman, Phys. Rev. B, 95: 214104 (2017). Crossref
  27. H. S. Akkera, N. N. K. Reddy, and M. C. Sekhara, Materials Research, 20, No. 3: 717 (2017). Crossref
  28. P. K. Yadawa, Arabian J. Sci. Eng., No. 37: 255 (2012). Crossref
  29. P. K. Yadawa, Adv. Mat. Lett., 2: 157 (2011). Crossref
  30. J. Feng, B. Xiao, C. L. Wan, Z. X. Qu, Z. C. Huang, J. C. Chen, R. Zhou, and W. Pan, Acta Mater., 59: 1742 (2011). Crossref
  31. A. K. Jaiswal, P. K. Yadawa, and R. R. Yadav, Ultrasonics, 89: 22 (2018). Crossref
  32. S. P. Singh, G. Singh, A. K. Verma, P. K. Yadawa, and R. R. Yadav, Pramana, 93: 83 (2019). Crossref
  33. P. K. Yadawa, Ceramics-Silikáty, 55: 127 (2011). Crossref
  34. R. I. Romanishin, I. M. Romanishin, M. M. Student, V. M. Gvozdetskii, B. P. Rusin, G. I. Romanishin, V. V. Koshevoi, S. I. Semak, and R. E. Krygul, Russian J. Nondestructive Testing, 55: 479 (2018). Crossref