Fabrication, Optimization, and Mechanism Analysis of Graphene/Hexagonal Boron Nitride Stacked Film

L. Zhang, X. T. Wang, N. X. Ci, R. Q. Peng, G. Q. Zhao, L. J. Ci, G. H. Min

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, 17923 Jingshi Road, 250061 Jinan, China

Received: 11.05.2021; final version - 15.06.2022. Download: PDF

Stacked structures of graphene/hexagonal boron nitride (G/h-BN) exhibit high carrier mobility, thermal stability, and deep ultraviolet absorption properties which are considered important for developing various novel devices. However, the realization of their large-scale fabrication and the improvement of performance are technically limited by the complicated exfoliation and transfer processes during fabrication. In this study, the h-BN film was successfully deposited by RF-magnetron sputtering and was used as an alternative to metal catalysts in the synthesis of graphene via low pressure chemical vapour deposition. This provides an alternative strategy to avoid any exfoliation and transfer processes in the development of G/h-BN stacked structures. The stacked structure was confirmed by Raman spectroscopy, atomic force microscopy, and x-ray photoelectron spectroscopy. The stacked films were found to be uniform, continuous and well doped with boron and nitrogen. The fabrication parameters were optimized to obtain high-quality graphene, and the formation mechanism of graphene on the BN film was also investigated.

Key words: hexagonal boron nitride, graphene, stacked film, RF-magnetron sputtering, chemical vapour deposition.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i09/1163.html

DOI: https://doi.org/10.15407/mfint.44.09.1163

PACS: 61.46.-w, 61.48.De, 61.72.-y, 65.80.+n, 68.35.Rh

Citation: L. Zhang, X. T. Wang, N. X. Ci, R. Q. Peng, G. Q. Zhao, L. J. Ci, and G. H. Min, Fabrication, Optimization, and Mechanism Analysis of Graphene/Hexagonal Boron Nitride Stacked Film, Metallofiz. Noveishie Tekhnol., 44, No. 9: 1163—1177 (2022)


REFERENCES
  1. A. K. Geim and K. S. Novoselov, Nat. Mater., 6: 183 (2007). Crossref
  2. M. Bokdam, P. A. Khomyakov, G. Brocks, Z. Zhong, and P. J. Kelly, Nano Lett., 11: 4631 (2011). Crossref
  3. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Nat. Mater., 12: 207 (2013). Crossref
  4. D. R. Cooper, B. D'Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, Int. Sch. Res. Notw. ISRN Condens. Matter Phys., 2012: 501686 (2012). Crossref
  5. O. Hod, V. Barone, J. E. Peralta, and G. E. Scuseria, Nano Lett., 7: 2295 (2007). Crossref
  6. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, Nat. Mater., 9: 430 (2010). Crossref
  7. M. Son, H. Lim, M. Hong, and H. C. Choi, Nanoscale, 3: 3089 (2011). Crossref
  8. S. Fratini and F. Guinea, Phys. Rev. B, 77: 195415 (2008). Crossref
  9. T. Ando, J. Phys. Soc. Jpn., 75: 074716 (2006). Crossref
  10. J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nat. Nanotechnol., 3: 206 (2008). Crossref
  11. J. Yan and M. S. Fuhrer, Phys. Rev. Lett., 107: 206601 (2011). Crossref
  12. L. Liao, J. Bai, Y. Qu, Y. Huang, and X. Duan, Nanotechnology, 21: 015705 (2009). Crossref
  13. G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, Phys. Rev. B, 76: 073103 (2007). Crossref
  14. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotechnol., 5: 722 (2010). Crossref
  15. P. Sutter, J. Lahiri, P. Zahl, B. Wang, and E. Sutter, Nano Lett., 13: 276 (2013). Crossref
  16. J. Wang, F. Ma, W. Liang, and M. Sun, Mater. Today Phys., 2: 6 (2017). Crossref
  17. V. Mughnetsyan, Superlattices Microstruct., 147: 106700 (2020). Crossref
  18. T. Ouyang, Y. Chen, Y. Xie, K. Yang, Z. Bao, and J. Zhong, Nanotechnology, 21: 245701 (2010). Crossref
  19. Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Science, 317: 932 (2007). Crossref
  20. R. Jerome and A.K. Sundramoorthy, Anal. Chim. Acta, 1132: 110 (2020). Crossref
  21. X. D. Hong, H. R. Zheng, and D. Liang, Mater. Lett., 277: 128356 (2020). Crossref
  22. S. D. Nehate, A. K. Saikumar, A. Prakash, and K. B. Sundaram, Mater. Today Adv., 8: 100106 (2020). Crossref
  23. K. Zhour, F. E. H. Hassan, H. Fahs, and M. Vaezzadeh, Mater. Today Commun., 21: 100676 (2019). Crossref
  24. Z. Dai, F. Wen, and Z. Yang, Mater. Lett., 232: 58 (2018). Crossref
  25. T. Taniguchi and K. Watanabe, J. Cryst. Growth, 2: 525 (2007). Crossref
  26. Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, and P. M. Ajayan, Nano Lett., 11: 2032 (2011). Crossref
  27. M. Wang, S. K. Jang, W.-J. Jang, M. Kim, S.-Y. Park, S.-W. Kim, S.-J. Kahng, J.-Y Choi, R. S. Ruoff, Y. J. Song, and S. Lee, Adv. Mater., 25: 2746 (2013). Crossref
  28. H. Wang, X. Zhang, J. Meng, Z. Yin, X. Liu, Y. Zhao, and L. Zhang, Small, 11: 1542 (2015). Crossref
  29. K. M. Hu, Z. Y. Xue, Y. Q. Liu, H. Long, B. Peng, H. Yan, Z. F. Di, X. Wang, L. W. Lin, and W. M. Zhang, Small, 15: 1804337 (2019). Crossref
  30. W. Yang, G. Chen, Z. Shi, C.-C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, K. Watanabe, T. Taniguchi, Y. Yao, Y. Zhang, and G. Zhang, Nat. Mater., 12: 792 (2013). Crossref
  31. T. Gao, X. Song, H. Du, Y. Nie, Y. Chen, Q. Ji, J. Sun, Y. Yang, Y. Zhang, and Z. Liu, Nat. Commun., 6: 6835 (2015). Crossref