Application of AlB$_{12}$–Al Electric Spark Coatings to Protect Titanium Alloys During Wear Under Fretting Corrosion

A. P. Umanskyi$^{1}$, A. I. Dukhota$^{2}$, V. E. Sheludko$^{1}$, M. S. Storozhenko$^{1}$, V. B. Muratov$^{1}$, M. A. Vasilkovska$^{1}$

$^{1}$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine
$^{2}$National Aviation University, 1 Lyubomyr Huzar Ave., UA-03058 Kyiv, Ukraine

Received: 28.07.2022. Download: PDF

The article deals with the study of the possibility of using AlB$_{12}$–50 wt.% Al aluminium-matrix composite material electric spark (ES) coatings to protect titanium alloys during wear under fretting. Fundamental possibility of such coatings obtaining is estimated by theoretical calculation of Palatnik’s criterion (1.22). Thermal conductivity coefficient and heat capacity of the composite were calculated or determined from an experiment. The coatings were deposited on ALIER-52 setup. Fretting corrosion tests were carried out on MFK-1 setup according to ‘the coating–counterbody’ system (counterbody–hardened Steel 45). Phase composition of the coating was studied with DRON-3M diffractometer and elemental x-ray spectrum analysis of the friction track surface was carried out using a JEOL JAMP9500F (SEM) microanalyzer equipped with an energy-dispersive x-ray microanalysis. The following phases namely TiB$_{2}$, Ti aluminides, Ti, TiO, TiO$_{2}$ and AlB$_{10}$ were revealed by x-ray analysis in the coating. The absence of the AlB$_{12}$ phase is noteworthy. It can be explained by thermal-oxidative destruction of aluminium dodecaboride under severe conditions of ES alloying (ESA). Regardless of the deposition mode, the wear of the sample with ES-coating is shown to be significantly less than that of the uncoated one. A conclusion is made about the prospect of using this electrode material for ESA of titanium alloys operating under fretting corrosion.

Key words: AlB$_{12}$–Al, ES-coating, fretting corrosion, wear, titanium alloys.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i10/1313.html

DOI: https://doi.org/10.15407/mfint.44.10.1313

PACS: 62.20.Qp, 68.55.Nq, 81.05.Je, 81.05.Mh, 81.15.Pq, 81.65.-b

Citation: A. P. Umanskyi, A. I. Dukhota, V. E. Sheludko, M. S. Storozhenko, V. B. Muratov, and M. A. Vasilkovska, Application of AlB$_{12}$–Al Electric Spark Coatings to Protect Titanium Alloys During Wear Under Fretting Corrosion, Metallofiz. Noveishie Tekhnol., 44, No. 10: 1313—1322 (2022)


REFERENCES
  1. B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Metallovedenie i Termicheskaya Obrabotka Tsvetnykh Metallov i Splavov [Metal Science and Heat Treatment of Non-Ferrous Metals and Alloys] (Moscow: MISIS: 1999) (in Russian).
  2. I. V. Gorynin, S. S. Ushakov, A. N. Khatuntsev, and I. L. Loshakova, Titanovye Splavy dlya Morskoy Tekhniki [Titanium Alloys for Marine Engineering] (St. Petersburg: Polytekhnika: 2007) (in Russian).
  3. Titanium and Titanium Alloys: Fundamentals and Applications. (Eds. C. Leyens and M. Peters) (Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA: 2003).
  4. A. A. Inozemtsev, I. G. Bashkatov, and A. S. Koryakovtsev, Aviatsionnye Materialy i Tekhnologii, 1: 13 (2007) (in Russian).
  5. S. L. Antonyuk, A. G. Molyar, A. N. Kalinyuk, and V. N. Zamkov, Sovremennaya Elektrometallurgiya, 1: 9 (2003) (in Russian).
  6. V. V. Mikhailov, A. E. Gitlevich, A. D. Verkhoturov, A. I. Mikhailyuk, A. V. Belyakov, and L. A. Konevtsov, Surf. Eng. Appl. Elect., 49, Iss. 5: 373 (2013). Crossref
  7. A. D. Verkhoturov, I. A. Podchernyaeva, L. F. Pryadko, and F. F. Egorov, Elektrodnye Materialy dlya Elektroiskrovogo Legirovaniya [Electrode Materials for Electrospark Alloying] (Moscow: Nauka: 1988) (in Russian).
  8. A. D. Verkhoturov and S. V. Nikolenko, Uprochnyayushhie Tehnologii i Pokrytiya, 2: 13 (2010) (in Russian).
  9. I. A. Podchernyaeva, V. M. Panashenko, A. D. Panasyuk, O. N. Grigor'ev, A. I. Dukhota, V. F. Labunets, and V. V. Zhiginas, Powder Metal. Met. Ceram., 46, Iss. 9-10: 442 (2007). Crossref
  10. I. A. Podchernyaeva, A. D. Panasyuk, V. M. Panashenko, O. N. Grigor'ev, A. I. Dukhota, and V. V. Zhiginas, Powder Metal. Met. Ceram., 48, Iss. 7-8: 435 (2009). Crossref
  11. V. M. Panashenko, I. A. Podchernyaeva, A. I. Dukhota, and A. D. Panasyuk, Powder Metal. Met. Ceram., 51, Iss. 1-2: 112 (2012). Crossref
  12. J. Benard, Okislenie Metallov. Tom I. Teoreticheskie Osnovy [Oxydation des Metaux. Tome I. Processus Fondamentaux] (Moscow: Metallurgiya: 1968) (in Russian).
  13. O. O. Vasiliev, V. B. Muratov, and T. I. Duda, Phys. Chem. Solid State, 18, No. 3: 358 (2017). Crossref
  14. P. S. Kisly, V. A. Neronov, T. A. Prikhna, and Yu. V. Bevza, Boridy Alyuminiya [Aluminum Borides] (Kiev: Naukova Dumka: 1990) (in Russian).
  15. V. B. Muratov, P. V. Mazur, V. V. Garbuz, E. V. Kartuzov, and O. O. Vasiliev, Sposib Oderzhannya Poroshku Dodekaborydu Alyuminiyu AlB12 [The Method of Obtaining of AlB12 Aluminium Dodecaboride Powder]: Patent 107193 UA. MPK (2016.01), C01B 35/04, C01F 7/00 (Promyslova Vlasnist, No. 10: 4.52) (2016) (in Ukrainian).
  16. P. V. Mazur, V. B. Muratov, V. V. Garbuz, E. V. Kartuzov, and O. O. Vasiliev, Udarostijka Keramika na Osnovi Dodekaborydu Alyuminiyu [Aluminium Dodecaboride-Based Crash-Proof Ceramics]: Patent 107259 UA. MPK (2016.01), C22C 1/04, C01B 35/00, B22F 3/04, C04B 111/20 (Promyslova Vlasnist, No. 10: 4.60) (2016) (in Ukrainian).
  17. A. P. Umanskyi, M. S. Storozhenko, V. E. Sheludko, V. B. Muratov, V. V. Kremenitsky, I. S. Martsenyuk, M. A. Vasilkovskaya, A. D. Kostenko, A. A. Vasiliev, A. E. Terentiev, and D. S. Kamenskykh, Metallofiz. Noveishie Tekhnol., 43, No. 11: 1443 (2021). Crossref
  18. V. N. Moiseev, V. A. Gribkov, and Yu. I. Zakharov, Aviatsionnye Materialy i Tekhnologii, 1: 47 (2007) (in Russian).
  19. auremo.org/materials/splav-ot4.html
  20. G. N. Dul'nev and Yu. P. Zarichnyak, Teploprovodnost Smesej i Kompozitsionnyh Materialov [Thermal Conductivity of Mixtures and Composite Materials] (Leningrad: Energiya: 1974) (in Russian).
  21. L. S. Palatnik, Dokl. Acad. Nauk SSSR, LXXXIX, No. 3: 455 (1953) (in Russian).
  22. A. E. Kudryashov, E. I. Zamulaeva, E. A. Levashov, O. S. Manakova, and M. I. Petrzhik, Surf. Eng. Appl. Elect., 55, Iss. 4: 390 (2019). Crossref
  23. V. I. Ermolayev, Metallovedenie i Termicheskaya Obrabotka Metallov, 12: 46 (1974) (in Russian).
  24. inzhener-info.ru/razdely/materialy/titanovye-splavy/deformiruemye-splavy/splav-ot4-srednej-prochnosti.html
  25. V. S. Kovalenko, A. D. Verkhoturov, L. F. Golovko, and I. A. Podchernyaeva, Lazernoe i Electroerozionnoe Uprochnenie Materialov [Laser and Electroerosion Hardening of Materials] (Moscow: Nauka: 1986) (in Russian).
  26. T. Atoda, I. Higashi, and M. Kobayashi, Sci. Pap. Inst. Phys. Chem. Res., 61, No. 3: 92 (1967).
  27. S.G. Grigorenko, G.M. Grigorenko, and O. M. Zadorozhnyuk, Sovremennaya Elektrometallurgiya, 3: 51 (2017) (in Russian). Crossref
  28. F. M. Noskov, L. I. Kveglis, V. I. Mali, M. B. Leskov, and E. V. Zakharova, Vestnik SibGAU, 18, No. 1: 205 (2017) (in Russian).
  29. A. Yu. Ishlinsky, I. V. Kragelsky, and I. M. Alekseev, Trenie i Iznos, VII, No. 4: 581 (1986) (in Russian).