Hardness of Ti–6Al–4V (ВТ6) Alloy Samples Fabricated by 3D-Printing Based on Electron-Beam Melting of Wire

B. M. Mordyuk$^{1,2}$, M. O. Vasylyev$^{1}$, S. M. Voloshko$^{2}$, N. I. Khripta$^{1}$

$^{1}$G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^{2}$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received: 02.07.2022; final version - 30.09.2022. Download: PDF

Paper examines the effects of ultrasonic impact treatment on the surface hardening of the Ti–6Al–4V (ВТ6) alloy samples obtained by the standard technology and printed by the additive technology ‘xBeam 3D Metal Printing’. To determine the optimal level of the load on the indenter for the microhardness measurements this level is estimated by changing the load in the range of 25–200 g. Orientation dependences of the microhardness of the 3D-printed Ti–6Al–4V (ВТ6) alloy have a slight spread of values ($\pm$ 0,2 GPa). The changes in microhardness of both types of samples are investigated and analysed depending on the duration of ultrasonic impact treatment in the argon stream. The increase in the ultrasonic impact treatment induced hardening effect of the 3D-Ti–6Al–4V (ВТ6) sample as compared to the annealed Ti–6Al–4V (ВТ6) sample can be explained by the change in the structural state, compressive residual stresses, as well as strain induced mechano-chemical oxidation of the surface. The difference in the strength, hardness and plasticity of the near-surface layers leads to a change in mechanical behaviour, which gives the potential for further improvement of the protective characteristics. Hardness measurements can be used to predict the strength of 3D-Ti–6Al–4V (ВТ6) depending on the type of additive manufacturing technology and on the usually required subsequent mechanical or heat treatment.

Key words: titanium alloys, additive technologies, ultrasonic impact treatment, mechanical characteristics.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i11/1433.html

DOI: https://doi.org/10.15407/mfint.44.11.1433

PACS: 62.40.+i, 64.70.dj, 81.20.Ev, 81.40.-z, 81.65.Kn

Citation: B. M. Mordyuk, M. O. Vasylyev, S. M. Voloshko, and N. I. Khripta, Hardness of Ti–6Al–4V (ВТ6) Alloy Samples Fabricated by 3D-Printing Based on Electron-Beam Melting of Wire, Metallofiz. Noveishie Tekhnol., 44, No. 11: 1433—1451 (2022) (in Ukrainian)


REFERENCES
  1. M. Srivastava, S. Rathee, S. Maheshwari, and T. K. Kundra, Additive Manufacturing: Fundamentals and Advancements (Boca Raton: CRC Press: 2019). Crossref
  2. V. V. Zhukov, G. M. Grigorenko, and V. A. Shapovalov, Avtomaticheskaya Svarka, No. 5-6: 148 (2016) (in Russian). Crossref
  3. P. M. Rizwan Ali, C. R. Hara Theja, S. Mahammad Syed Sheb, and C. Yuvaraj, Int. J. Res. Applied Sci. Eng. Technol., 3, No. VII: 16 (2015).
  4. D. Ding, Z. Pan, D. Cuiuri, and H. Li, Int. J. Advanc. Manufact. Technol., 81: 465 (2015). Crossref
  5. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Acta Mater., 117: 371 (2016). Crossref
  6. M. Leary, Design for Additive Manufacturing (Amsterdam: Elsevier: 2020).
  7. J. Pou, A. Riveiro, and P. Davim, Additive Manufacturing (Amsterdam: Elsevier: 2021).
  8. R. Housholder, Moulding Process, Patent of USA No. 4247508 (Published January 27, 1981).
  9. D. S. Henn, Solid Freeform Fabrication System and Method, Patent of USA No. 7073561 (Published July 11, 2006).
  10. K. M. Taminger, J. K. Watson, R. A. Hafley, and D. D. Petersen, Solid Freeform Fabrication Apparatus and Methods, Patent of USA No. 7168935 (Published January 30, 2007).
  11. D. V. Koval'chuk, V. H. Mel'nyk, I. V. Mel'nyk, and B. A. Tuhay, Sposib Vyhotovlennya Ob'yemnykh Ob'yektiv i Prystriy dlya yoho Realizatsiyi [The Method of Manufacturing Three-Dimensional Objects and the Device for its Implementation], Patent of Ukrainian No. 112682 (Published October 10, 2016) (in Ukrainian).
  12. D. Kovalchuk, V. Melnyk, I. Melnyk, and B. Tugai, J. Elektrotechnica Elektronica (E+E), 51: 37 (2016).
  13. D. V. Koval'chuk, V. I. Mel'nik, I. V. Mel'nik, and B. A. Tugay, Avtomaticheskaya Svarka, No. 12: 770 (2017) (in Russian).
  14. D. V. Koval'chuk, G. M. Grigorenko, A. Yu. Tunik, L. I. Adeeva, S. G. Gri-gorenko, and S. N. Stepanyuk, Sovremennaya Elektrometallurgiya, No. 4: 133 (2018) (in Russian). Crossref
  15. D. Kovalchuk, O. Ivasishin, and D. Savvakin, MATEC Web of Conferences, 321: 03014 (2020). Crossref
  16. D. Kovalchuk, V. Melnyk, I. Melnyk, D. Savvakin, O. Dekhtyar, O. Stasiuk, and P. Markovsky, J. Mater. Eng. Perform., 30: 5307 (2021). Crossref
  17. M. S. Drozu, Yu. I. Slavskiy, and A. A. Baron, Zavodskaya Laboratoriya, 44: 612 (1978) (in Russian).
  18. I. M. Pavlov, Yu. F. Tarasovich, G. G. Leshkevich, and A. E. Shelest, Zavodskaya Laboratoriya, 44: 605 (1978) (in Russian).
  19. Yu. V. Milman, B. A. Galanov, and S. I. Chugunova, Acta Metall. Mater., 41: 2523 (1993). Crossref
  20. Yu. V. Milman, A. A. Golubenko, and S. N. Dub, Acta Mater., 59: 7480 (2011). Crossref
  21. Yu. V. Mil'man, Poroshkovaya Metallurgiya, No. 7/8: 93 (1999) (in Russian).
  22. Y. V. Milman, S. I. Chugunova, I. V. Goncharova, and A. A. Golubenko, Usp. Fiz. Met., 19, Iss. 3: 271 (2018). Crossref
  23. Y. V. Milman, B. M. Mordyuk, K. E. Grinkevych, S. I. Chugunova, I. V. Goncharova, A. I. Lukyanov, and D. A. Lesyk, Usp. Fiz. Met., 21: 554 (2020). Crossref
  24. M. A. Vasyl'ev, H. Y. Prokopenko, and V. S. Fylatova, Usp. Fiz. Met., 5: 345 (2004) (in Russian). Crossref
  25. M. A. Vasil'ev, V. I. Beda, and P. A. Gurin, Fiziologicheskiy Otklik na Sostoyanie Poverkhnosti Metallicheskikh Dental'nykh Implantatov [Physiological Response on the Surface State of the Surface of Metallic Dental Implants] (Lviv: GalDent: 2010) (in Russian).
  26. N. Chekir, Y. Tian, J. J. Sixsmith, and M. Brochu, Mater. Sci. Eng. A, 724: 376 (2018). Crossref
  27. N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, Additive Manufact., 8: 12 (2015). Crossref
  28. A. Gisario, M. Kazarian, F. Martina, and M. Mehrpouya, J. Manufact. Systems, 53: 121 (2019). Crossref
  29. H. I. Prokopenko, B. M. Mordyuk, M. O. Vasyl'yev, and S. M. Voloshko, Fizychni Osnovy Ul'trazvukovoho Udarnoho Zmitsnennya Metalevykh Poverkhon' [Physical Principles for Ultrasonic Impact Hardening of Metallic Surfaces] (Kyiv: Naukova Dumka: 2017) (in Ukrainian).
  30. B. N. Mordyuk and G. I. Prokopenko, Mater. Sci. Eng. A, 437: 396 (2006). Crossref
  31. M. A. Vasylyev, B. N. Mordyuk, V. P. Bevz, S. M. Voloshko, and O. B. Mordiuk, Int. J. Surf. Sci. Eng., 14: 1 (2020). Crossref
  32. M. O. Vasyl'yev, V. S. Filatova, L. F. Yatsenko, and D. V. Kozyryev, Metallofiz. Noveishie Tekhnol., 34, No. 6: 821 (2012) (in Ukrainian).
  33. M. O. Vasylyev, B. M. Mordyuk, G. I. Prokopenko, S. M. Voloshko, L. F. Yatsenko, and N. I. Khripta, Metallofiz. Noveishie Tekhnol., 40, No. 8: 1029 (2018) (in Ukrainian). Crossref
  34. G. A. Gogotsi and V. I. Galenko, Problemy Prochnosti, No. 3: 104 (1997) (in Russian).
  35. J. G. Swadener, E. P. George, and G. M. Pharr, J. Mech Phys. Sol., 50: 681 (2002). Crossref
  36. M. M. Khrushchov, Metody Ispytaniya na Mikrotverdost'. Pribory [Methods of Tests of Microhardness. Devices] (Moscow: Nauka: 1961) (in Russian).
  37. Y. Pi, G. Agoda-Tandjawa, S. Potiron, C. Demangel, D. Retraint, and H. Benhayoune, J. Nanosci. Nanotechnol., 12: 4892 (2012). Crossref
  38. M. A. Vasiliev, S. M. Voloshko, and L. F. Yatsenko, Usp. Fiz. Met., 13: 303 (2012) (in Russian). Crossref
  39. J. S. Zuback, and T. DebRoy, Mater., 11: 2070 (2018). Crossref
  40. B. N. Mordyuk, O. P. Karasevskaya, and G. I. Prokopenko, Mater. Sci. Eng. A, 559: 453 (2013). Crossref
  41. B. Baufeld and O. van der Biest, Sci. Technol. Adv. Mater., 10: 015008 (2009). Crossref
  42. B. Baufeld, O. van der Biest, and R. Gault, Int. J. Mat. Res., 100, Iss. 11: 1536 (2009). Crossref
  43. B. Baufeld, O. van der Biest, R. Gault, and K. Ridgway, IOP Conf. Ser.: Mater. Sci. Eng., 26: 012001 (2011). Crossref
  44. F. Martina, J. Mehnen, S. W. Williams, P. Colegrove, and F. Wang, J. Mater. Proc. Technol., 212: 1377 (2012). Crossref
  45. B. Baufeld, E. Brandl, and O. van der Biest, J. Mater. Proc. Technol., 211: 1146 (2011). Crossref
  46. E. Brandl, A. Schoberth, and C. Leyens, Mater. Sci. Eng. A, 532: 295 (2012). Crossref
  47. P. Åkerfeldt, M.-L. Antti, and R. Pederson, Mater. Sci. Eng. A, 674: 428 (2016). Crossref
  48. P. Wanjara, K. Watanabe, C. de Formanoir, Q. Yang, C. Bescond, S. Godet, M. Brochu, K. Nezaki, J. Gholipour, and P. Patnaik, Adv. Mater. Sci. Eng., 2019: 3979471 (2019). Crossref
  49. F. Pixner, F. Warchomicka, P. Peter, A. Steuwer, M. H. Colliander, R. Pederson, and N. Enzinger, Mater., 13: 3310 (2020). Crossref
  50. Ya. B. Fridman, Mekhanicheskie Svoystva Metallov [Mechanical Properties of Metals] (Moscow: Mashinostroenie: 1972) (in Russian).
  51. V. S. Zolotorevskiy, Mekhanicheskie Svoystva Metallov [Mechanical Properties of Metals] (Moscow: Metallurgiya: 1983) (in Russian).
  52. D. J. Abson and F. J. Gurney, Metals Technol., 1: 483 (1974). Crossref
  53. J. S. Keist and T. A. Palmer, Mater. Sci. Eng. A, 693: 214 (2017). Crossref
  54. V. Tuninetti, A. F. Jaramillo, G. Rojas-Ulloa Riu, C. Znaidi, A. Medina, C. Mateo, and A. M. Roa, Metals, 11: 104 (2021). Crossref
  55. M. O. Vasylyev, B. M. Mordyuk, S. M. Voloshko, V. I. Zakiyev, A. P. Burmak, and D. V. Pefti, Metallofiz. Noveishie Tekhnol., 41, No. 11: 1499 (2019) (in Ukrainian). Crossref
  56. M. A. Vasylyev, S. P. Chenakin, and L. F. Yatsenko, Acta Mater., 103: 761 (2016). Crossref