Development of a System Aimed at Choosing the Most Effective Technology for Improving the Quality of Babbitt Coatings of Sliding Bearings. Pt. 2. Mathematical Model of Wear of Babbitt Coatings. Criteria for Choosing the Technology of Deposition of Babbitt Coatings

V. B. Tarelnyk$^{1}$, O. P. Gaponova$^{2}$, Ie. V. Konoplianchenko$^{1}$, N. V. Tarelnyk$^{1}$, M. Yu. Dumanchuk$^{1}$, V. O. Pirogov$^{1}$, T. P. Voloshko$^{1}$, D. B. Hlushkova$^{3}$

$^{1}$Sumy National Agrarian University, 160 Gerasym Kondratiev Str., UA-40021 Sumy, Ukraine
$^{2}$Sumy State University, 2 Rymsky-Korsakov Str., UA-40007 Sumy, Ukraine
$^{3}$Kharkiv National Automobile and Highway University, 25 Yaroslav Mudryy Str., UA-61002 Kharkiv, Ukraine

Received: 08.08.2022. Download: PDF

In the article, a direct choice system of the most rational technology for applying a babbitt coating on the liners of sliding bearings (SB) is developed, which takes into account both economic and environmental requirements. On the basis of the performed research, a physically substantiated mathematical model of the babbitt-coatings’ wear process (wear equation) is proposed, which allows solving both the direct problem of determining weight and linear wears based on the known work of friction, as well as the inverse problem of finding the necessary work of friction to obtain the required amount of weight or linear wears. With knowing the time to reach a certain amount of wear, it becomes possible to operate the products more rationally, timely assigning the repair time and friction-surface catastrophic-wear preventing. In the course of research, a methodology is developed for determining the constants of the wear equation: activation energy ($E_{A}$) as well as maximum weight ($\Delta m_{\textrm{б.п.н}}$) and linear ($\Delta h_{\textrm{б.п.н}}$) wears, which can be used as selection criteria for the most rational technology of applying a babbitt coating.

Key words: sliding bearing, babbitt, coating, wear, structure, transition layer, adhesion strength, electrospark alloying, mathematical model.

URL: https://mfint.imp.kiev.ua/en/abstract/v44/i12/1643.html

DOI: https://doi.org/10.15407/mfint.44.12.1643

PACS: 46.32.+x, 46.35.+z, 46.50.+a, 46.55.+d, 61.72.Qq, 81.40.Pq

Citation: V. B. Tarelnyk, O. P. Gaponova, Ie. V. Konoplianchenko, N. V. Tarelnyk, M. Yu. Dumanchuk, V. O. Pirogov, T. P. Voloshko, and D. B. Hlushkova, Development of a System Aimed at Choosing the Most Effective Technology for Improving the Quality of Babbitt Coatings of Sliding Bearings. Pt. 2. Mathematical Model of Wear of Babbitt Coatings. Criteria for Choosing the Technology of Deposition of Babbitt Coatings, Metallofiz. Noveishie Tekhnol., 44, No. 12: 1643—1659 (2022) (in Ukrainian)


REFERENCES
  1. V. B. Tarelnyk, O. P. Gaponova, Ie. V. Konoplianchenko, N. V. Tarelnyk, V. S. Martsynkovskyy, M. Y. Dumanchuk, M. O. Mikulina, V. O. Pirogov, and N. K. Medvedchuk, Metallofiz. Noveishie Tekhnol., 44, No. 11: 1475 (2022) (in Ukrainian). Crossref
  2. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Y. Filonenko, Procedia Engineering, 39: 157 (2012). Crossref
  3. V. Martsinkovsky, V. Yurko, V. Tarelnik, and Y. Filonenko, Procedia Engineering, 39: 148 (2012). Crossref
  4. I. Pavlenko, V. Simonovskiy, V. Ivanov, J. Zajac, and J. Pitel (Eds. V. Ivanov et al.) Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering (Cham: Springer: 2019), p. 325. Crossref
  5. E. A. Petrovsky, K. A. Bashmur, Yu. N. Shadchina, V. V. Bukhtoyarov, and V. S. Tynchenko, J. Phys.: Conf. Ser., 1399: 055032 (2019). Crossref
  6. V. B. Tarel'nik, A. V. Paustovskii, Y. G. Tkachenko, V. S. Martsinkovskii, E. V. Konoplyanchenko, and B. Antoshevskii, Surf. Eng. Appl. Electrochem., 53: 285 (2017). Crossref
  7. V. B. Tarel'nik, V. S. Martsinkovskii, and V. I. Yurko, Chem. Petrol. Eng., 51: 328 (2015). Crossref
  8. V. B. Tarelnyk, O. P. Gaponova, V. B. Loboda, E. V. Konoplyanchenko, V. S. Martsinkovskii, Yu. I. Semirnenko, N. V. Tarelnyk, M. A. Mikulina, and B. A. Sarzhanov, Surf. Engin. Appl. Electrochem., 57: 173 (2021). Crossref
  9. V. B. Tarel'nik, V. S. Martsinkovskii, and V. I. Yurko, Chem. Petrol. Eng., 51: 402 (2015). Crossref
  10. A. S. Kalinichenko, U. L. Basiniuk, and E. I. Mardasevich, Sci. Tech., 18, Iss. 3: 195 (2019). Crossref
  11. I. F. Santos, Mech. Ind., 12: 275 (2011). Crossref
  12. D. N. Garkunov, Je. L. Mel'nikov, and V. S. Gavriljuk, Tribotekhnika: Uchebnoe Posobie [Tribotechnika: Textbook] (Moscow: KNORUS: 2015) (in Russian).
  13. A. V. Chichinadze, Je. M. Berliner, Je. D. Braun et al., Trenie, Iznos i Smazka: (Tribologiya i Tribotekhnika) [Friction, Wear and Lubrication: (Tribology and Tribotechnics)] (Ed. A. V. Chichinadze) (Moscow: Mashinostroenie: 2003) (in Russian).
  14. N. S. Penkin, Osnovy Tribologii i Tribotekhniki. Uchebnoe Posobie [Fundamentals of Tribology and Tribotechnics. Textbook] (Moscow: Mashinostroenie: 2012) (in Russian).
  15. N. K. Myshkin and M. I. Petrokovec, Trenie, Smazka, Iznos. Fizicheskie Osnovy i Tekhnicheskie Prilozheniya Tribologii [Friction, Lubrication, Wear. Physical Foundations and Technical Applications of Tribology] (Moscow: FIZMATLIT: 2007) (in Russian).
  16. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petrol. Eng., 53: 385 (2017). Crossref
  17. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petrol. Eng., 53: 114 (2017). Crossref
  18. V. B. Tarel'nik, V. S. Martsinkovskii, and A. N. Zhukov, Chem. Petrol. Eng., 53: 266 (2017). Crossref
  19. Ju. I. Babej, M. E. Gurevich, and E. L. Doktorovich, Fiziko-Khimicheskaya Mekhanika Materialov, No. 2: 76 (1979) (in Russian).