Structure of High-Entropy Solders and Soldered Seams Based on Transition $d$-Metals

S. V. Maksymova, V. E. Sukhoyars’kyy

E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazymyr Malevych Str., UA-03150 Kyiv, Ukraine

Received: 15.09.2022; final version - 08.11.2022. Download: PDF

Improvement and progress in the field of creating structures with a responsible purpose in various branches of industry prompts the scientific community to improve and develop new materials with increased operational characteristics, which combine high strength, hardness with high plasticity at room and elevated temperatures, corrosion resistance and other important physical and mechanical properties. Permanent search and fundamental research in this area led to the emergence of a new unique class of materials—high-entropy alloys—complex multicomponent systems, which have a high entropy factor and are characterized mostly by the structure of solid solutions. In recent years, great attention is paid not only to the development of structural high-entropy materials, but also to the creation of high-entropy solders, which are used to obtain non-separable joints by brazing. This review presents the structure of high-entropy solders based on transition $d$-elements with a single-phase structure of a solid solution, eutectic, which are compatible with the base metal and provide the necessary temperature range of brazing, a good level of its wetting and mechanical characteristics of the soldered joints. The peculiarities of formation of the structure of soldered joints, when using a high-entropy solder, in the presence of a concentration gradient and mutual diffusion processes at the interphase boundary and with obtaining high-entropy crystal structures in the soldered seams are considered.

Key words: high-entropy solder, brazing, soldered seam, microstructure, solid solution, eutectic, diffusion.

URL: https://mfint.imp.kiev.ua/en/abstract/v45/i01/0075.html

DOI: https://doi.org/10.15407/mfint.45.01.0075

PACS: 06.60.Vz, 61.72.Ff, 62.20.fg, 66.10.cg, 68.08.-p, 81.20.Vj, 81.30.Fb

Citation: S. V. Maksymova and V. E. Sukhoyars’kyy, Structure of High-Entropy Solders and Soldered Seams Based on Transition $d$-Metals, Metallofiz. Noveishie Tekhnol., 45, No. 1: 75—93 (2023) (in Ukrainian)


REFERENCES
  1. J. W. Yeh, Y. L. Chen, S. J. Lin, and S. K. Chen, Materials Science Forum, 560: 1 (2007). Crossref
  2. S. O. Firstov, Visnyk NAN Ukrayiny, 5: 18 (2017) (in Ukrainian).
  3. M. P. Semen'ko and R. V. Ostapenko, Zhurnal Nano- ta Elektronnoyi Fizyky, 10, No. 4: 04032 (2018) (in Ukrainian). Crossref
  4. M. O. Krapivka, Yu. P. Mazur, M. P. Semen'ko, and S. O. Firstov, Metallofiz. Noveishie Tekhnol., 37, No. 6: 731 (2015) (in Ukrainian).
  5. S. O. Firstov, V. F. Horban', M. O. Krapivka, N. I. Danylenko, and V. I. Kopylov, Mizhvuzivs'kyy Zbirnyk 'Naukovi Notatky', 54: 336 (2016) (in Ukrainian).
  6. M. V. Karpets', O. M. Myslyvchenko, O. S. Makarenko, M. O. Krapivka, V. F. Horban', and A. V. Samelyuk, Problemy Tertya ta Znoshuvannya, No. 2 (63): 103 (2014) (in Ukrainian).
  7. A. D. Pogrebnjak, A. A. Bagdasaryan, I. V. Yakushchenko, and V. M. Beresnev, Russian Chem. Rev., 83, No. 11: 1027 (2014). Crossref
  8. J. M. Sanchez, I. Vicario, J. Albizuri, T. Guraya, and J. Garcia, J. Mater. Research Technol., 8, Iss. 1: 795 (2019). Crossref
  9. M. B. Yvchenko, V. H. Pushyn, and N. Wanderka, Zhurnal Tekhnicheskoy Fiziki, 84: 2: 57 (2014) (in Russian).
  10. W. Tillman, L. Wojarski, D. Stangier, M. Manka, and C. Timmer, Welding in the World, 64: 1597 (2020). Crossref
  11. Y. Zhang and Y. J. Zhou, Materials Science Forum, 561-565: 1337 (2007). Crossref
  12. B. S. Murty, J. W. Yeh, S. Ranganathan, and P. P. Bhattacharjee, High-Entropy Alloys (Elsevier: 2019). Crossref
  13. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mater., 6, No. 5: 299 (2004). Crossref
  14. A. E. Shapiro, Proc. of Int. Conf. Brazing Soldering (Oct. 3-6, 2021) (Miami: 2021), p. 32.
  15. B. Gludovatz, A. Hohenwarter, K. Thurston, H. Bei, Z. Wu, E. P. George, and R. O. Ritchie, Nat. Commun., 7: 10602 (2016). Crossref
  16. D. B. Miracle and O. N. Senkov, Acta Mater., 122: 448 (2017). Crossref
  17. R. S. Mishra, R. S. Haridas, and P. Agrawal, Mater. Sci. Eng. A, 812: 141085 (2021). Crossref
  18. R. Kozak, A. Sologubenko, and W. Steurer, J. Crystallography, 230, Iss. 1: 55 (2015). Crossref
  19. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Mater. Sci. Eng. A, 375-377: 213 (2004). Crossref
  20. M. H. Tsai and J. W. Yeh, Mater. Res. Lett., 2: 107 (2014). Crossref
  21. A. Takeuchi, N. Chen, T. Wada, Y. Yokoyama, H. Kato, A. Inoue, and J. W. Yeh, Intermetallics, 19: 1546 (2011). Crossref
  22. B. Gwalani, S. Gorsse, D. Choudhuri, M. Styles, Y. Zheng, R. S. Mishra, and R. Banerjee, Acta Mater., 153: 169 (2018). Crossref
  23. F. Otto, A. Dlouhý, K. G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, and E. P. George, Acta Mater., 112: 40 (2016). Crossref
  24. Z. Tang, M. C. Gao, H. Diao, T. F. Yang, J. P. Liu, T. T. Zuo, Y. Shang, Z. P. Lu, Y. Q. Cheng, Y. W. Zhang, K. A. Dahmen, P. K. Liaw, and T. Egami, JOM, 65: 1848 (2013). Crossref
  25. V. F. Khorunov and S. V. Maksymova, Advanced in Brazing (Ed. D. P. Seculic) (Oxford Cambridge: WPL: 2013), p. 85. Crossref
  26. S. V. Maksymova, Adgeziya Rasplavov i Payka Materialov, 40: 70 (2007) (in Russian).
  27. D. Luo, Y. Xiao, L. Hardwick, R. Snell, M. Way, X. S. Morell, F. Livera, N. Ludford, C. Panwisawas, H. Dong, and R. Goodall, Entropy, 23: 78 (2021). Crossref
  28. I. S. Malashenko, V. V. Kurenkova, A. F. Belyavin, and V. V. Trokhimchenko, Sovremennaya Elektrometallurgiya, 4: 26 (2006) (in Russian).
  29. A. Rabinkin, Advances in Brazing (Ed. D. P. Seculic) (Oxford Cambridge: WPL: 2013), p. 121. Crossref
  30. S. V. Maksymova, V. V. Voronov, and P. V. Kovalchuk, Paton Welding J., 8: 12 (2017). Crossref
  31. W. Tillmann, T. Ulitzka, L. Wojarski, M. Manka, H. Ulitzka, and D. Wagstyl, Welding in the World, 64: 201 (2019). Crossref
  32. G. Wang, Y. Yang, R. He, C. Tan, M. Huttula, and W. Cao, J. European Ceramic Society, 40, Iss. 9: 3391 (2020). Crossref
  33. H. Xu, L. Shi, C. Lu, H. Li, Y. He, W. Chen, Y. Li, J. Yang, W. Zheng, Y. Ma, D. Wang, Z. Ding, H. Zou, and Z. Gao, Mater. Characterization, 179: 111368 (2021). Crossref
  34. S. Shukla, T. Wang, S. Cotton, and R. S. Mishra, Scr. Mater., 156: 105 (2018). Crossref
  35. D. Bridges, S. Zhang, S. Lang, M. Gao, Z. Yu, Z. Feng, and A. Hu, Mater. Lett., 215: 11 (2017). Crossref
  36. M. Gao, Development of New High Entropy Alloys for Brazing of Ni-Base Superalloys (Thesis of Disser. for Master of Sci. Metall. and Mater. Engineer) (Colorado: Colorado School of Mines: 2017).
  37. X. S. Morell, R. Googall, E. Pickering, P. Webb, P. Rodgers, E. S. De Cambra, and L. T. Marquez, Proc. Int. Conf. Brazing and Soldering (Oct. 3-6, 2021) (Miami: 2021), p. 14.
  38. A. I. Gabov, A. A. Ivannikov and O. N. Sevryukov, IOP Conf. Series: Materials Sci. Eng., 1005: 012012 (2020). Crossref